
Principles of Linear Algebra With Maple
TM

Modular Arithmetic and Matrix Cryptography

Kenneth Shiskowski and Karl Frinkle
c⃝ Draft date February 25, 2011

Contents

1 Modular Arithmetic and Matrix Cryptography 1
1.1 Modular Arithmetic . 1
1.2 Matrix Encryption . 5

v

Chapter 1

Modular Arithmetic and
Matrix Cryptography

1.1 Modular Arithmetic

In this section we will partition the set of integers Z into non-empty disjoint
subsets ZN = {[0]N , [1]N , [2]N , . . . , [N − 1]N} based on the remainder you get
when you divide them all by a base positive integer N ≥ 2. ZN is called
the set of mod N equivalence classes of Z . Since every integer w can be
written uniquely as w = Q · N + R, for integer quotient Q and non-negative
integer remainder R with 0 ≤ R < N , we can partition the integers Z by their
remainder when they are divided by N so that [0]N is the set of all integers
with 0 remainder for R (which is all multiples of N) while [N − 1]N is the set
of all integers with N − 1 remainder for R. So [R]N = {Q ·N +R | Q ∈ Z},
for integers R with 0 ≤ R ≤ N − 1.

It should also be noted that for any integer w, we have [w]N = [R]N if R is
the remainder when you divide w by N . So

[0]N = [N]N = [2N]N = . . .

[1]N = [N + 1]N = [2N + 1]N = . . .

and similarly for the other elements of ZN . We say that [w]N (which is the
integers equivalent to w mod N) is the equivalence class of Z generated by the
integer w and it consists of all the integers with the same remainder R as w
has when divided by N .

The amazing and immensely useful nature of ZN lies in that we can do
arithmetic with the elements of this set, that is, we can add, subtract and
multiply their elements together to get another element of ZN , and when N is
prime we can divide by the non-zero elements of ZN . This last fact makes mod-

1

2 Chapter 1. Modular Arithmetic and Matrix Cryptography

ular arithmetic in Zp, for p a prime, the place to work for many cryptographic
purposes as we will see shortly.

Example 1.1.1. (The Example of Z5 for Base N = 5.) Let’s now do
an example for base N = 5. Then the partition of Z mod 5 is the collection of
subsets of Z given by Z5 = {[0]5, [1]5, [2]5, [3]5, [4]5} where Z5 is read Z mod 5,
and

[0]5 = {Q · 5 | Q ∈ Z}
[1]5 = {Q · 5 + 1 | Q ∈ Z}
[2]5 = {Q · 5 + 2 | Q ∈ Z}
[3]5 = {Q · 5 + 3 | Q ∈ Z}
[4]5 = {Q · 5 + 4 | Q ∈ Z} .

In particular, we have that

[3]5 = {. . . ,−12,−7,−2, 3, 8, 13, 18, . . .}

and so

. . . = [−12]5 = [−7]5 = [−2]5 = [3]5 = [8]5 = [13]5 = [18]5 = . . .

Example 1.1.2. (Addition and Multiplication in Modular Arithmetic
in Z5.) Let’s do the addition and multiplication tables for arithmetic in Z5.
The way you add two elements [u]5 and [v]5 is that [u]5 + [v]5 = [u + v]5 and
you similarly can multiply them by [u]5 · [v]5 = [u · v]5. In other words, in
order to add or multiply two elements [u]5 and [v]5 of Z5, you must first add
or multiply u and v and then find their equivalence class mod 5 containing this
sum or product of u and v. So

[2]5 + [4]5 = [2 + 4]5 = [6]5 = [1]5

and
[2]5 · [4]5 = [2 · 4]5 = [8]5 = [3]5.

This addition and multiplication of equivalence classes mod 5 gives the same
answer regardless of what elements of the two equivalence classes you use to
perform the addition or multiplication. So if we use [2]5 = [17]5 and [4]5 =
[−21]5, then

[2]5 + [4]5 = [17]5 + [−21]5 = [17− 21]5 = [−4]5 = [−4 + 5]5 = [1]5

and

[2]5 · [4]5 = [17]5 · [−21]5 = [17 · (−21)]5 = [−357]5 = [−357 + 360]5 = [3]5.

1.1 Modular Arithmetic 3

Now let’s have Maple do some mod 5 arithmetic for us using the command
modp, and also produce the addition and multiplication tables mod 5 in two
matrices. Maple does not use the square bracket and subscript notation as we
do since it treats our equivalence classes mod 5 as integers.

> modp(17, 5);
2

> modp(-21, 5);
4

> modp(modp(17, 5)+modp(-21, 5), 5);

1

> modp(modp(17, 5)*modp(-21, 5), 5);

3

> with(linalg):

> AdditionTableMod5 := matrix(6, 6, 0):

> AdditionTableMod5[1, 1] := “+”:

> for j from 2 to 6 do
AdditionTableMod5[1, j] := [j-2]:

end do:

> for j from 2 to 6 do
AdditionTableMod5[j, 1] := [j-2]:

end do:

> for j from 2 to 6 do
for k from 2 to 6 do
AdditionTableMod5[j, k] := modp(j-2+(k-2), 5):

end do:
end do:

> print(AdditionTableMod5);

“+” [0] [1] [2] [3] [4]

[0] 0 1 2 3 4

[1] 1 2 3 4 0

[2] 2 3 4 0 1

[3] 3 4 0 1 2

[4] 4 0 1 2 3

> MultTableMod5 := matrix(6, 6, 0):

4 Chapter 1. Modular Arithmetic and Matrix Cryptography

> MultTableMod5[1, 1] := “*”:

> for j from 2 to 6 do
MultTableMod5[1, j] := [j-2]:

end do:

> for j from 2 to 6 do
MultTableMod5[j, 1] := [j-2]:

end do:

> for j from 2 to 6 do
for k from 2 to 6 do
MultTableMod5[j, k] := modp((j-2)*(k-2), 5):

end do:
end do:

> print(AdditionTableMod5);

“*” [0] [1] [2] [3] [4]

[0] 0 0 0 0 0

[1] 0 1 2 3 4

[2] 0 2 4 1 3

[3] 0 3 1 4 2

[4] 0 4 3 2 1

Example 1.1.3. (Subtraction and Division in Modular Arithmetic in
Z5.) Now we can do the inverse operations to addition and multiplication in
Z5, subtraction and division. For any element [u]5 of Z5, its additive inverse is
[−u]5 since

[u]5 + [−u]5 = [u− u]5 = [0]5

where [0]5 is the zero element of Z5. So in order to subtract [u]5 in Z5, we
instead add [−u]5, in other words,

[v]5 − [u]5 = [v]5 + [−u]5 = [v − u]5.

As an example,
[2]5 − [4]5 = [2− 4]5 = [−2]5 = [3]5.

Unfortunately, division in Z5 is more complicated than the other 3 arith-
metic operations since we have no fractions in Z5. If we want to divide by
[u]5 ̸= [0]5, then we need to find an element [v]5 where [u]5 · [v]5 = [1]5 so
that [v]5 is the multiplicative inverse of [u]5. In other words, if we want to
divide by [u]5, we instead multiply by its multiplicative inverse [v]5. As an

1.2 Matrix Encryption 5

example, if we want to divide by [2]5 we instead multiply by [3]5 since [3]5 is
[2]5’s multiplicative inverse because [2]5 · [3]5 = [1]5. Thus,

1

[2]5
= [2]−1

5 = [3]5.

In general, it is a non-trivial task to compute multiplicative inverses in
modular arithmetic, happily Maple can do it for us as long as the base N is
a prime since only in Zp, for p a prime, does every non-zero element have a
multiplicative inverse. Note below that Maple tells us that

1

[18]83
= [18]−1

83 = [60]83.

> modp(1/2, 5);
3

> modp(1/18, 83);
60

> modp(18*60, 83);
1

> type(83, prime);
true

1.2 Matrix Encryption

In this section we want to use modular arithmetic mod a prime p to encode
messages to numerical values mod p along with multiplication by square ma-
trices to do encryption and decryption of messages. First, we must create an
alphabet for our messages consisting of a prime p number of elements. For this
we will use the English alphabet of 26 capital letters along with the punctuation
marks of period, comma, colon, question mark and a blank space to separate
words. This gives us an alphabet of 31 symbols for 31 being prime. If you
want to include the digits 0 through 9, then you must enlarge your alphabet
by these 10 symbols to get an alphabet of 41 symbols which is also prime. We
will not include these 10 digits in our alphabet below, but you should do so as
an exercise.

Our next step is to assign the symbols of our alphabet to the elements of
Z31 where A = [0]31, B = [1]31, . . . , Z = [25]31, period(.)= [26]31, comma(,)=
[27]31, blank space()= [28]31, question mark(?)= [29]31, and a colon(:)= [30]31.
This will allow us to change our messages into numerical lists of values taken

6 Chapter 1. Modular Arithmetic and Matrix Cryptography

from Z31. We will also need to do the reverse assignment to turn our numerical
messages back into the English alphabet. Our message written in Z31 will be
said to be encoded, but not yet encrypted.

Next we can break our message into blocks of the same length, say blocks of
size K whose elements are from Z31. If your message is not of length an integer
multiple of K, then use blank spaces to make this happen. It is these blocks
of length K which will be encrypted by multiplying them (written as columns)
by a square matrix E of size K × K whose entries are also from Z31. The
decryption will be done by multiplying the encoded message blocks by E−1

which will exist if [det(E)]31 ̸= [0]31. This encryption matrix E can be chosen
at random and E can be changed at random in order to prevent someone from
discovering the value of E and so breaking your code.

Example 1.2.1. As our first step we must have Maple assign values of Z31 to
our alphabet of capital letters and symbols using the table command with the
table called PlainTextToMod31, and also reverse this assignment with another
table called Mod31ToPlainText.

> PlainTextToMod31 := table([“A” = 0, “B” = 1, “C” = 2, “D” = 3, “E” =
4, “F” = 5, “G” = 6, “H” = 7, “I” = 8, “J” = 9, “K” = 10, “L” = 11, “M” =
12, “N” = 13, “O” = 14, “P” = 15, “Q” = 16, “R” = 17, “S” = 18, “T” = 19,
“U” = 20, “V” = 21, “W” = 22, “X” = 23, “Y” = 24, “Z” = 25, “.” = 26, “,”
= 27, “ ” = 28, “?” = 29, “:” = 30]):

> PlainTextToMod31[“ ”];
28

> message1 := convert(“IS MATH THE KING OF THE SCIENCES, AND
PHYSICS IS ITS QUEEN?”, list);

message1 := [“I”, “S”, “ ”, “M”, “A”, “T”, “H”, “ ”, “T”, “H”, “E”, “ ”, “K”,

“I”, “N”, “G”, “ ”, “O”, “F”, “ ”, “T”, “H”, “E”, “ ”, “S”, “C”, “I”, “E”,

“N”, “C”, “E”, “S”, “, ”, “ ”, “A”, “N”, “D”, “ ”, “P”, “H”, “Y”, “S”, “I”,

“C”, “S”, “ ”, “I”, “S”, “ ”, “I”, “T”, “S”, “ ”, “Q”, “U”, “E”, “E”, “N”, “?”]

> encodedmessage1 := [seq(PlainTextToMod31[message1[k]], k =1..nops(mess-
age1))];

encodedmessage1 := [8, 18, 28, 12, 0, 19, 7, 28, 19, 7, 4, 28, 10, 8, 13, 6, 28, 14, 5,

28, 19, 7, 4, 28, 18, 2, 8, 4, 13, 2, 4, 18, 27, 28, 0, 13, 3, 28, 15, 7, 24, 18, 8, 2, 18,

28, 8, 18, 28, 8, 19, 18, 28, 16, 20, 4, 4, 13, 29]

Now we use a table called Mod31ToPlainText to decode our messages from
mod 31 back to plain text in our alphabet.

1.2 Matrix Encryption 7

> Mod31ToPlainText := table([0 = “A”, 1 = “B”, 2 = “C”, 3 = “D”, 4 =
“E”, 5 = “F”, 6 = “G”, 7 = “H”, 8 = “I”, 9 = “J”, 10 = “K”, 11 = “L”, 12
= “M”, 13 = “N”, 14 = “O”, 15 = “P”, 16 = “Q”, 17 = “R”, 18 = “S”, 19 =
“T”, 20 = “U”, 21 = “V”, 22 = “W”, 23 = “X”, 24 = “Y”, 25 = “Z”, 26 =
“.”, 27 = “,”, 28 = “ ”, 29 = “?”, 30 = “:”])

> Mod31ToPlainText[9];
“J”

> decodedmessage1 := [seq(Mod31ToPlainText[encodedmessage1[k]], k = 1 ..
nops(encodedmessage1))];

decodedmessage1 := [“I”, “S”, “ ”, “M”, “A”, “T”, “H”, “ ”, “T”, “H”, “E”, “ ”,

“K”, “I”, “N”, “G”, “ ”, “O”, “F”, “ ”, “T”, “H”, “E”, “ ”, “S”, “C”, “I”, “E”,

“N”, “C”, “E”, “S”, “, ”, “ ”, “A”, “N”, “D”, “ ”, “P”, “H”, “Y”, “S”, “I”,

“C”, “S”, “ ”, “I”, “S”, “ ”, “I”, “T”, “S”, “ ”, “Q”, “U”, “E”, “E”, “N”, “?”]

> plaintextdecodedmessage1 := cat(seq(convert(decodedmessage1[k], symbol),
k = 1 .. nops(encodedmessage1)));

plaintextdecodedmessage1 := IS MATH THE KING OF THE SCIENCES,

AND PHYSICS IS ITS QUEEN?

Now we need to decide on a block size K to break our encoded messages
into so that we can multiply these blocks by the encryption matrix E which
is K × K and whose entries are in Z31. This matrix E must have an inverse
matrix E−1 mod 31 (we need [det(E)]31 ̸= [0]31) so that we can decrypt our
messages by multiplication by E−1. Let K = 3 for simplicity. We will have
Maple pick the 3× 3 matrix E randomly.

> with(linalg):

> E := matrix(3, 3, rand(0 .. 30));

E :=

 28 22 14
25 12 5
1 26 11

> modp(det(E), 31);

10

> nops(message1);
59

> modp(nops(message1), 3);
2

8 Chapter 1. Modular Arithmetic and Matrix Cryptography

Our message called message1 is not of length a multiple of 3 since it has
59 characters or symbols. So we must place a blank space at the end of our
message so that it has length 60.

> newmessage1 := convert(“IS MATH THE KING OF THE SCIENCES, AND
PHYSICS IS ITS QUEEN? ”, list);

newmessage1 := [“I”, “S”, “ ”, “M”, “A”, “T”, “H”, “ ”, “T”, “H”, “E”, “ ”, “K”,

“I”, “N”, “G”, “ ”, “O”, “F”, “ ”, “T”, “H”, “E”, “ ”, “S”, “C”, “I”, “E”, “N”,

“C”, “E”, “S”, “, ”, “ ”, “A”, “N”, “D”, “ ”, “P”, “H”, “Y”, “S”, “I”, “C”, “S”,

“ ”, “I”, “S”, “ ”, “I”, “T”, “S”, “ ”, “Q”, “U”, “E”, “E”, “N”, “?”, “ ”]

> nops(newmessage1);
60

> encodednewmessage1 := [seq(PlainTextToMod31[newmessage1[k]], k = 1 ..
nops(newmessage1))];

encodednewmessage1 := [8, 18, 28, 12, 0, 19, 7, 28, 19, 7, 4, 28, 10, 8, 13, 6, 28, 14,

5, 28, 19, 7, 4, 28, 18, 2, 8, 4, 13, 2, 4, 18, 27, 28, 0, 13, 3, 28, 15, 7, 24, 18, 8, 2, 18,

28, 8, 18, 28, 8, 19, 18, 28, 16, 20, 4, 4, 13, 29, 28]

> blockedencodednewmessage1 := transpose(matrix(20, 3, encodednewmes-
sage1))

blockedencodednewmessage1 := 8 12 7 7 10 6 5 7 18 4 4 28 3 7 8 28 28 18 20 13
18 0 28 4 8 28 28 4 2 13 18 0 28 24 2 8 8 28 4 29
28 19 19 28 13 14 19 28 8 2 27 13 15 18 18 18 19 16 4 28

> blockedencryptednewmessage1 := map(modp, evalm(E&*blockedencoded-
newmessage1), 31);

blockedencryptednewmessage1 :=20 13 24 25 18 19 30 25 9 23 18 5 11 15 24 3 17 11 22 30
29 23 17 22 8 29 29 22 18 18 17 21 21 26 4 18 23 29 10 7
9 4 14 16 20 20 12 16 3 23 25 16 28 23 10 0 11 23 13 21

> with(ListTools):
> encryptedencodednewmessage1:=Flatten(convert(transpose(blockedencrypt-
ednewmessage1), listlist)) ;

encryptedencodednewmessage1 := [20, 29, 9, 13, 23, 4, 24, 17, 14, 25, 22, 16, 18, 8,

20, 19, 29, 20, 30, 29, 12, 25, 22, 16, 9, 18, 3, 23, 18, 23, 18, 17, 25, 5, 21, 16, 11, 21,

28, 15, 26, 23, 24, 4, 10, 3, 18, 0, 17, 23, 11, 11, 29, 23, 22, 10, 13, 30, 7, 21]

1.2 Matrix Encryption 9

> encrypteddecodednewmessage1 := [seq(Mod31ToPlainText[encryptedenco-
dednewmessage1[k]], k = 1 .. nops(encryptedencodednewmessage1))];

encrypteddecodednewmessage1 := [“U”, “?”, “J”, “N”, “X”, “E”, “Y”, “R”, “O”,

“Z”, “W”, “Q”, “S”, “I”, “U”, “T”, “?”, “U”, “:”, “?”, “M”, “Z”, “W”, “Q”,

“J”, “S”, “D”, “X”, “S”, “X”, “S”, “R”, “Z”, “F”, “V”, “Q”, “L”, “V”, “ ”, “P”,

“.”, “X”, “Y”, “E”, “K”, “D”, “S”, “A”, “R”, “X”, “L”, “L”, “?”, “X”, “W”,

“K”, “N”, “:”, “H”, “V”]

Now we want to use multiplication by E−1 to turn blockedencryptednewmes-
sage1 back into blockedencodednewmessage1, and then back to newmessage1.

> inverseE := map(modp, inverse(E), 31);

inverseE :=

 25 6 19
4 17 21
8 10 22

> map(modp, evalm(E &*inverseE), 31); 1 0 0

0 1 0
0 0 1

> map(modp, evalm(inverseE&*blockedencryptednewmessage1), 31); 8 12 7 7 10 6 5 7 18 4 4 28 3 7 8 28 28 18 20 13

18 0 28 4 8 28 28 4 2 13 18 0 28 24 2 8 8 28 4 29
28 19 19 28 13 14 19 28 8 2 27 13 15 18 18 18 19 16 4 28

> Flatten(convert(transpose(%), listlist));

[8, 18, 28, 12, 0, 19, 7, 28, 19, 7, 4, 28, 10, 8, 13, 6, 28, 14, 5, 28, 19, 7, 4, 28, 18, 2, 8,

4, 13, 2, 4, 18, 27, 28, 0, 13, 3, 28, 15, 7, 24, 18, 8, 2, 18, 28, 8, 18, 28, 8, 19, 18, 28,

16, 20, 4, 4, 13, 29, 28]

> [seq(Mod31ToPlainText[%[k]], k = 1 .. nops(%))];

[“I”, “S”, “ ”, “M”, “A”, “T”, “H”, “ ”, “T”, “H”, “E”, “ ”, “K”, “I”, “N”, “G”,

“ ”, “O”, “F”, “ ”, “T”, “H”, “E”, “ ”, “S”, “C”, “I”, “E”, “N”, “C”, “E”, “S”,

“, ”, “ ”, “A”, “N”, “D”, “ ”, “P”, “H”, “Y”, “S”, “I”, “C”, “S”, “ ”, “I”, “S”,

“ ”, “I”, “T”, “S”, “ ”, “Q”, “U”, “E”, “E”, “N”, “?”, “ ”]

> cat(seq(convert(%[k], symbol), k = 1 .. nops(%)));

IS MATH THE KING OF THE SCIENCES, AND PHYSICS IS ITS

QUEEN?

