
Principles of Linear Algebra With Maple
TM

Rolling an Ellipse Along a Curve

Kenneth Shiskowski and Karl Frinkle

c© Draft date February 6, 2011

Contents

1 Rolling an Ellipse Along a Curve 1

1.1 The Setup . 1
1.2 The First . 3
1.3 Automating the Process . 9
1.4 Further Questions to Consider 13

v

Chapter 1

Rolling an Ellipse Along a

Curve

1.1 The Setup

In Section 7.2 of Principles of Linear Algebra With Maple
TM

, we discussed the
topic of “rolling” a circle along a curve. Of course, the rolling was in quotes
due to the fact that we were really just sliding the circle along the curve. The
animation have the appearance of a rolling circle, but this was due only to
the fact a circle is a perfectly symmetric object, and no matter which way it is
rotated, there is no apparent change in orientation. So what happens if we pick
an object which is not as symmetric? Take, for instance, an ellipse. Clearly if
an ellipse is rotated through most angles, it will be obvious to an observer that
the ellipse was indeed rotated. The only two angles for which this is not the
case is θ = π and θ = 2π. The question then becomes: what additionally must
be done to rotate an ellipse versus a circle?

To determine some of the math required to rotate an ellipse, we will start
with a simple setup, that of rolling the ellipse along a horizontal line, similar
to rolling a football, along a level surface, end over end. We define an ellipse
with center at (xc, yc) parametrically as

x(t) = xc + a cos(t)

y(t) = yc + b sin(t)
(1.1)

where a and b are the length of the major/minor axes corresponding, dependent
upon a > b or a < b. If we graph this ellipse, starting at t = 0, then initially
wee have the point (xc + a, yc). The bottom most point on the ellipse occurs
when t = 3

2
π, yielding the point (xc, yc− b). So in order to roll an ellipse along

1

2 Chapter 1. Rolling an Ellipse Along a Curve

a horizontal line, our line must have the equation

y = yc − b (1.2)

To perform actual calculations, we must choose values for the center (xc, yc)
and lengths of axes, a and b, however it should be apparent throughout the
following calculations that nothing depends on these values. We will choose our
center to be at (2, 4), with a = 4 and b = 2. Thus our horizontal line, given in
equation (1.2), is y = 4−2 = 2. We will haveMaple graph our initial setup now.

> restart:

> with(plots): with(plottools): with(linalg): with(LinearAlgebra):

> xc:= 2; yc:= 4;
xc := 2
yc := 4

> a:= 4; b:= 2;
a := 4
b := 2

> EllipseF:= t->[xc+a*cos(t), yc+b*sin(t)];

EllipseF := t → [xc+ a cos(t), yc+ b sin(t)]

> plot1:= plot([xc+a*cos(t), yc+b*sin(t), t=0..2*Pi], scaling = constrained,
color = red, thickness = 3, labels = [x,y]):

> plot2:= plot(2, x = -10..20, color = magenta, thickness = 2):

> plot3:= pointplot([xc, yc], symbol=cross, symbolsize=10, color=black):

> display({plot1, plot2, plot3}, view=[-10..20, 0..17], scaling=constrained);

0

5

10

15

y

–10 10 20
x

Figure 1.1: The original ellipse and the horizontal line it will roll along

As you can see from Figure 1, the ellipse rests on the horizontal line that it
will roll along. So we have now set up our problem.

1.2 The First Step 3

1.2 The First Step

As a next step in the process, we simply with to roll our ellipse a fixed distance,
r, to the right. If we wish to roll the ellipse r units in the x-direction, then we
must count out r units on the ellipse, in a counter-clockwise direction, starting
at the point on the ellipse which is touching the line.

Recall that the formula for the arclength L of a parametric curve (x(t), y(t))
for t ∈ (t0, t1) is given by

L =

∫ t1

t0

√

(x′(t))2 + (y′(t))2 dt (1.3)

The total arclenth of the ellipse can be found by setting t0 = 0 and t1 = 2π,
which gives a full revolution.

> evalf(int(sqrt(diff(a*cos(t),t)ˆ2 + diff(b*sin(t),t)ˆ2), t=0..2*Pi));

19.37689643

For the first step, t0 = 3

2
π, and we need to find the value of t1 such that

r =

∫ t1

3

2

√

(x′(t))2 + (y′(t))2 dt

Setting r = 2, which is reasonably small in comparison to the arclength of the
ellipse, means that we need to find the time corresponding to the point (x, y)
which is the end of the length 2 arc starting at the point on the ellipse which
touches the line. (We are assuming counter-clockwise direction since the ellipse
is moving to the right). Setting arclength to 2, gives the equation

2 =

∫ t1

3

2

√

16 sin2(t) + 4 cos2(t) dt

In order to get the correct solution value for t1, we need to make sure that
t1 > 3

2
π. We will use the fsolve command, with the extra option of limiting

the range to search for solutions.

> fsolve(2 = evalf(int(sqrt(16*sin(t)ˆ2 + 4*cos(t)ˆ2), t=3*Pi/2..t1)), t1, 3*Pi/2
.. 2*Pi);

5.229238282

We plot the difference of 2 and the arclength formula, notice the root here
corresponds to the t value which give arclength 2.

4 Chapter 1. Rolling an Ellipse Along a Curve

> plot(2 - evalf(int(sqrt(16*sin(t)ˆ2 + 4*cos(t)ˆ2), t=3*Pi/2..t1)), t1=0..2*Pi);

0

5

10

15

1 2 3 4 5 6
t1

Figure 1.2: Difference of 2 and the arclength of the ellipse

> EllipseF(5.229238282);

[3.976573758, 2.261239222]

> plot4:= pointplot([EllipseF(3*Pi/2), EllipseF(5.229238282)], symbol = dia-
mond, symbolsize = 20, color = GREEN):

> plot5:= pointplot([4,2], symbol=circle, symbolsize=20, color=black):

> display({plot1, plot2, plot3, plot4, plot5},view=[-3..10,-3..10]);

–2

0

2

4

6

8

10

y

–2 2 4 6 8 10
x

Figure 1.3: Original point on the ellipse which touches the line, and the new
point which will touch the line after rolling two units to the right.

1.2 The First Step 5

> display({plot1, plot2, plot3, plot4, plot5}, view=[1..5, 1..3], scaling = con-
strained);

1

1.5

2

2.5

3

y

2 3 4 5
x

Figure 1.4: Close-up of Figure 1.3 near the desired point of rotation

Now we need to rotate the ellipse. But we are missing one important piece
of information, the angle of rotation. We need to construct the pair of vectors
which will yield the correct angle of rotation. As a first guess, you may try to
use the three points depicted in Figure 1.4 above, but perform the resulting
calculations show that this will not work. The next obvious idea is to still use
the horizontal line for one vector, but as second vector, use the tangent line
at the new point on the ellipse which will be touching the horizontal line after
rotation. This also makes use determine where this tangent line intercepts the
horizontal line y = 2. We illustrate this in the Maple code and Figure 1.5
following.

> EllipseF(t);
[2 + 4 cos(t), 4 + 2 sin(t)]

> M:= diff(EllipseF(t),t)[2]/diff(EllipseF(t),t)[1];

M := −
1

2

cos(t)

sin(t)

> m:= evalf(subs(t=5.229238282, M));

m := 0.2841928836

> solve(subs({y=2},y-EllipseF(5.229238282)[2]=m*(x-EllipseF(5.229238282)
[1])), x);

3.057341655

> arrow1:= arrow([3.057341655, 2], [3.976573758, 2.261239222], .02, .1, .1,
color = black):

> arrow2:= arrow([3.057341655, 2], [4, 2], .02, .1, .1, color = black):

6 Chapter 1. Rolling an Ellipse Along a Curve

> plot6:= pointplot([3.057341655,2], symbol = circle, color = BLUE, symbol-
size = 20):

> display([plot1, plot2, plot3, plot4, plot5, plot6, arrow1, arrow2], view =
[2.9..4.2, 1.8..2.4], scaling = constrained);

1.8

1.9

2

2.1

2.2

2.3

2.4

y

3 3.2 3.4 3.6 3.8 4 4.2
x

Figure 1.5: The vectors needed to compute the angle of rotation for the first
step in the rolling.

> Center:= [3.057341655,2];

Center := [3.057341655, 2]

> Top:= EllipseF(5.229238282);

Top := [3.976573758, 2.261239222]

> Bottom:= [4, 2];
Bottom := [4, 2]

> u:= <Top-Center>;

u :=

[

0.919232103
0.261239222

]

> v:= <Bottom-Center>;

v :=

[

0.942658345
0

]

> theta r:= VectorAngle(u,v);

theta r := 0.2768925149

> evalf(%*180/Pi);
15.86477248

So from above, we have approximately 15.86 degrees to rotate, or 0.27 radians.
So now we need to move the ellipse to the origin, rotate, and then finally place

1.2 The First Step 7

it back so that its center is back at the original center. To do this, we take
the ellipse function F (t), and subtract the center (2, 4) from the corresponding
components. Next, we rotate using the rotation matrix

Aθ =

[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]

(1.4)

and our formula for the rotated ellipse, Fθ(t) is now given by

Fθ(t) = Aθ(F (t)− (2, 4)) + (2, 4). (1.5)

> EllipseCol:=matrix(2,1,EllipseF(t)-[2,4]);

EllipseCol :=

[

4 cos(t)
2 sin(t)

]

> Atheta:= theta->matrix(2,2,[cos(theta),-sin(theta),sin(theta),cos(theta)]):

> NewEllipse:= evalm(Atheta(-theta r)&*EllipseCol);

NewEllipse :=

[

3.847638271 cos(t) + 0.5467357072 sin(t)
−1.093471414 cos(t) + 1.923819136 sin(t)

]

> plot7:= plot([NewEllipse[1,1]+2,NewEllipse[2,1]+4, t=0..2*Pi], color = blue,
thickness = 2):

> display({plot1,plot2,plot3,plot4,plot5,plot6,plot7}, view = [-4..10, -4..10]);

–4

–2

0

2

4

6

8

10

y

–4 –2 2 4 6 8 10
x

Figure 1.6: Original ellipse and the rotated ellipse, both at center (2, 4)

We have successfully rotated the ellipse, now we need to move it into the
correct position. This must be a simple shift of some kind, but we need to find
the right one, keeping in mind that we wish to automate this process. The
one thing we must be sure of, is that the lowest point on the rotated ellipse

8 Chapter 1. Rolling an Ellipse Along a Curve

(corresponding to t = 5.229238282) must move to the point (4, 2) since that is
how far to the right we are rolling the ellipse along the horizontal line. Corre-
spondingly, the original center (2, 4) must therefore be shifted the same amount!

> LowestPoint:= [evalf(subs({t=5.229238282}, NewEllipse[1,1])), evalf(subs(
{t=5.229238282}, NewEllipse[2,1]))];

LowestPoint := [1.425963908,−2.212862355]

> plot8:= pointplot(LowestPoint, color = black, symbol = circle, symbolsize
= 20):

> minimize(NewEllipse[2,1],t=5..5.6);

−2.212862355

> ShifT:= Bottom-LowestPoint;

ShifT := [2.574036092, 4.212862355]

> NewNewEllipse:= evalm(NewEllipse+ShifT);

NewNewEllipse :=

[

3.847638271 cos(t) + .5467357072 sin(t) + 2.574036092
−1.093471414 cos(t) + 1.923819136 sin(t) + 4.212862355

]

> plot9:= plot([NewNewEllipse[1,1], NewNewEllipse[2,1], t=0..2*Pi], color =
blue, thickness=2, scaling=constrained):

> plot10:= pointplot(ShifT, color = black, symbol = cross, symbolsize = 10):

> display({plot1,plot2,plot3,plot4,plot5,plot9,plot10}, view = [-3..10, -3..10]);

–2

0

2

4

6

8

10

y

–2 2 4 6 8 10
x

Figure 1.7: Original ellipse and the rotated ellipse, both in the correct positions.

1.3 Automating the Process 9

1.3 Automating the Process

Now that we know how an ellipse can be rolled to to right a single fixed dis-
tance to the right, we need to determine how to create a process for repeating
the process. We will start the process from the previous section over, this time
making things more flexible so that the process can be repeated in a for loop.

> restart:

> with(linalg): with(plots): with(LinearAlgebra):

The variables xc and yc will correspond to the center of the ellipse, and a

and b are the lengths along the x-axis and y-axis of the ellipse, respectively.

> xc:=2; yc:=4;
xc := 2
yc := 4

> a:=2; b:=4;
a := 4
b := 2

The definition of the ellipse, as a function of t, where 0 ≤ t ≤ 2π is given
next.

> EllipseF:=[xc+a*cos(t),yc+b*sin(t)];

EllipseF := [2 + 4 cos(t), 4 + 2 sin(t)]

The variable r corresponds to how far to the right we wish to go for each step.
The variable yline is the y =line that the ellipse will roll along.

> r:= 0.5:

> yline:= yc-b;
yline := 2

Next we calculate the total perimeter of the ellipse. This will help is later,
when we need to use the fsolve command to locate the times that sweep out
arclengths of length r given above, which is where we come up with the formula
in the definition of the variable S.

> totalPerimeter:= evalf(int(sqrt(diff(a*cos(t),t)ˆ2 + diff(b*sin(t),t)ˆ2), t =
0..2*Pi));

totalPerimeter := 19.37689643

10 Chapter 1. Rolling an Ellipse Along a Curve

The variable numsteps tells us how many steps to the right we will go,
Atheta is the standard rotation matrix, t0 is the initial time corresponding to
the point on the ellipse that touches the line yline. The variable xval is where
we start the ellipse rolling, in the x-direction.

> numrsteps:= 40:

> S:= (totalPerimeter/r)/numrsteps;

S := 0.9688448215

> Atheta:= theta->matrix(2,2,[cos(theta),-sin(theta),sin(theta),cos(theta)]):

> t0:= 3*Pi/2:

> xval:= xc:

We will want to plot each ellipse, and corresponding center, as we go through
the for loop. Therefore we initialize a couple of plots.

> PlotEllipse[1]:= plot([EllipseF[1], EllipseF[2], t = 0..2*Pi], color = blue,
thickness = 3):

PlotCenter[1]:= pointplot([xc, yc], symbol = cross, symbolsize = 15, color
= red):

We now do the for loop which, which automates each step from the pre-
vious section. See if you can determine exactly how the following code works,
and relate it back to the steps used in Section 1.2.

> for k from 1 to numrsteps do
ts:= fsolve(r = evalf(int(sqrt(diff(EllipseF[1],t)ˆ2 + diff(EllipseF[2],t)ˆ2),
t=t0..t1)), t1,t0..t0+3*S):

M:= diff(EllipseF[2], t)/diff(EllipseF[1], t):
m:= evalf(subs(t=ts, M));
xint:= solve(subs({y=yline}, y-subs({t=ts},EllipseF[2])=m*(x- subs(t=ts,

EllipseF[1]))), x):
Cpt:= [xint,yline]:
Tpt:= [evalf(subs(t=ts,EllipseF[1])), evalf(subs(t=ts,EllipseF[2]))]:
Bpt:= [xval+k*r, yline]:
u:= <evalf(Tpt-Cpt)>:
v:= <evalf(Bpt-Cpt)>:
theta r:= evalf(VectorAngle(u,v)):
EllipseCol:= evalf(EllipseF-[xc,yc]):
NewEllipse:= evalm(Atheta(-theta r)&*EllipseCol):
Lpt:= [evalf(subs(t=ts,NewEllipse[1])), evalf(subs(t=ts, NewEllipse[2]))]:
ShifT:= evalf([Bpt[1]-Lpt[1], Bpt[2]-Lpt[2]]):

1.3 Automating the Process 11

TempFunc:= [evalm(NewEllipse+ShifT)[1], evalm(NewEllipse+ShifT)[2]]:
EllipseF:= TempFunc:
xc:= ShifT[1]:
yc:= ShifT[2]:
PlotEllipse[k+1]:= plot([EllipseF[1],EllipseF[2],t=0..2*Pi], color = blue,
thickness = 3):

PlotCenter[k+1]:= pointplot([xc,yc], symbol = cross, symbolsize = 15,
color = red):

print([evalf(t0), evalf(ts), evalf(m), xint, theta r]);
t0:=ts:

end do:

[4.712388981, 4.837634224, 0.06295213005, 2.250818442, 0.06286916815]

[4.837634224, 4.964377945, 0.06524991473, 2.752337634, 0.06515755071]

[4.964377945, 5.094260323, 0.07024557186, 3.253993975, 0.07013037181]

[5.094260323, 5.229238281, 0.07889852891, 3.755899408, 0.07873541969]

[5.229238281, 5.371839344, 0.09315749557, 4.258205308, 0.09288940404]

[5.371839344, 5.525564365, 0.1169956373, 4.761116197, 0.1164661717]

[5.525564365, 5.695516530, 0.1589181977, 5.264841596, 0.1576002841]

[5.695516530, 5.889027416, 0.2374022491, 5.769127160, 0.2330872702]

[5.889027416, 6.113472938, 0.3806155108, 6.270699972, 0.3636847478]

[6.113472938, 6.360840027, 0.5264205469, 6.759057056, 0.4845599565]

[6.360840027, 6.596574059, 0.4473881505, 7.238960154, 0.4206797897]

[6.596574059, 6.801150074, 0.2827341251, 7.732725761, 0.2755422530]

[6.801150074, 6.979000636, 0.1827302672, 8.234910919, 0.1807362574]

[6.979000636, 7.138131068, 0.1299721980, 8.738278564, 0.1292476649]

[7.138131068, 7.284443626, 0.1006979579, 9.241201103, 0.1003596554]

[7.284443626, 7.421956334, 0.08346104147, 9.743577472, 0.08326805914]

[7.421956334, 7.553505394, 0.07300086043, 10.24554568, 0.07287159184]

[7.553505394, 7.681226798, 0.06677931948, 10.74724501, 0.06668031490]

[7.681226798, 7.806856500, 0.06353635545, 11.24878696, 0.06345106277]

[7.806856500, 7.931928746, 0.06269043691, 11.75026255, 0.06260850623]

[7.931928746, 8.057926053, 0.06409838242, 12.25175412, 0.06401081046]

[8.057926053, 8.186417244, 0.06800045527, 12.75334713, 0.06789592349]

[8.186417244, 8.319215528, 0.07511350205, 13.25514343, 0.07497271764]

[8.319215528, 8.458595981, 0.08693581881, 13.75727742, 0.08671779473]

[8.458595981, 8.607632126, 0.1064909067, 14.25993315, 0.1060910764]

[8.607632126, 8.770734819, 0.1401247346, 14.76333529, 0.1392182749]

12 Chapter 1. Rolling an Ellipse Along a Curve

[8.770734819, 8.954371422, 0.2017240386, 15.26752838, 0.1990527406]

[8.954371422, 9.166689926, 0.3181753113, 15.77094742, 0.3080468784]

[9.166689926, 9.408443977, 0.4868817082, 16.26561855, 0.4530980124]

[9.408443977, 9.652710266, 0.5042403084, 16.74558633, 0.4670341024]

[9.652710266, 9.869234493, 0.3388261544, 17.23342977, 0.3266859207]

[9.869234493, 10.05615447, 0.2131173091, 17.73374068, 0.2099759606]

[10.05615447, 10.22152186, 0.1461548899, 18.23703360, 0.1451273440]

[10.22152186, 10.37210920, 0.1098907450, 18.74016874, 0.1094515809]

[10.37210920, 10.51255477, 0.08896094943, 19.24273800, 0.08872737794]

[10.51255477, 10.64607099, 0.07634623448, 19.74484234, 0.07619841721]

[10.64607099, 10.77501472, 0.06872534658, 20.24662846, 0.06861744890]

[10.77501472, 10.90124534, 0.06445684485, 20.74821819, 0.06436780345]

[10.90124534, 11.02635382, 0.06274518131, 21.24970894, 0.06266303789]

[11.02635382, 11.15182601, 0.06329655010, 21.75118488, 0.06321222467]

> Yplot:=plot(yline,x=-3..30,color=BLACK, thickness=2):

> for j from 1 to numrsteps+1 do
PlotTog[j]:=display([PlotEllipse[j],PlotCenter[j], Yplot]):

end do:

> display([seq(PlotTog[l],l=1..numrsteps+1)], insequence = true, scaling =
constrained, axes = none);

Figure 1.8: Nine frames in the animation of rolling the ellipse

Figure 1.8 is the culmination of all of our work thus far. Unfortunately, we
cannot display the actual animation here, so nine frames are show at the same
time. The lighter ellipse on the left is the first in the series. Also note that
each subsequent ellipses rests on the horizontal line, even after being rotated.
So it appears that we have successfully rolled an ellipse along a horizontal line!

1.4 Further Questions to Consider 13

> display(seq(PlotCenter[j], j = 1..numrsteps+1), view = [0..25, 0..10], scaling
= constrained);

0

2

4

6

8

10

y

5 10 15 20 25

x

Figure 1.9: The centers of each of the ellipses throughout the rotation

Showing all 41 ellipses at the same time would not help us view the process
at all. However, in Figure 1.9, the center of each ellipse is displayed. Note
that the distance between centers is significantly less when the curvature of
the portion of the ellipse resting on the line is larger. This corresponds to the
portions of the ellipse closest to the minor axes.

1.4 Further Questions to Consider

We end with a discussion (and leave you with questions) on how to generalize
this process. Before we do this, we must realize what restrictions were used in
all the work done previous. The most important assumption that was made,
was that our curve that we rolled the ellipse along was actually a horizontal line.

1. How do things change if we decide not to use a horizontal line, but a line
with nonzero slope instead?

If you can determine the answer to this question, then the following should
be answerable as well. Remember, that if we were rolling an ellipse a distance
r to the right along a horizontal line, where the ellipse touched the line at
the point (xp, yp), we then knew that the rotated ellipse would be touching
the horizontal line at the point (xp + r, yp). This is clearly not the case for a
line with nonzero slope! Furthermore, we also use the fact that the line was
horizontal to help compute the angle of rotation needed. This must change as
well! If you can figure out how to adapt the previous work to allow for lines on
nonzero slope, then the following questions may also be answerable.

14 Chapter 1. Rolling an Ellipse Along a Curve

2. What must be modified to roll an ellipse along a curve given in the form
y = f(x)?

3. What happens if you wish to roll an ellipse along a parametric curve of
the form (x, y) = (x(s), y(s))? Is this really a generalization of question 1 or is
more mathematics required?

