
Principles of Linear Algebra With Maple
TM

The Newton–Raphson Method

Kenneth Shiskowski and Karl Frinkle

c© Draft date February 6, 2011

Contents

1 The Newton-Raphson Method for a Single Equation 1

1.1 The Geometry of the Newton-Raphson Method 1
1.2 Examples of the Newton-Raphson Method 10
1.3 An Example of When the Newton-Raphson Method Does the

Unexpected . 16

2 The Newton-Raphson Method for Square Systems

of Equations 19

2.1 Newton-Raphson for Two Equations in Two Unknowns 19
2.2 Newton-Raphson for Three Equations in Three Unknowns . . . 28

v

Chapter 1

The Newton-Raphson

Method for a Single

Equation

1.1 The Geometry of the Newton-Raphson

Method

In studying astronomy, Sir Isaac Newton needed to solve an equation f(x) = 0
involving trigonometric functions such as sine. He could not do it by any
algebra he knew and all he really needed was just a very good approximation
to the equation’s solution. He then discovered the basic algorithm called the
Newton-Raphson Method although Newton found it in a purely algebraic format
which was very difficult to use and understand. The general method and its
geometric basis was actually first seen by Joseph Raphson (1648 - 1715) upon
reading Newton’s work although Raphson only used it on polynomial equations
to find their real roots.

The Newton-Raphson method is the true bridge between algebra (solving
equations of the form f(x) = 0 and factoring) and geometry (finding tangent
lines to the graph of y = f(x)). What follows will explore the idea of the
Newton-Raphson Method and how tangent lines will help us solve equations
both quickly and easily although not for exact solutions, only approximate
ones.

The reason that we are studying the Newton-Raphson Method in this book
is that it can also solve square non-linear systems of equations using matrices
and their inverses as we shall see later. It is part of the wonderful effectiveness
of the Newton-Raphson Method in that it can solve either a single equation
or a square system of equations for its real or complex solutions, but only

1

2 Chapter 1. Newton-Raphson Method for a Single Equation

approximately although to as many decimal places as you want.
Now we will discuss the important application of using tangent lines to solve

a single equation of the form f(x) = 0 for approximate solutions either real or
complex.

Example 1.1.1. The best way to understand the simplicity of this method
and its geometric basis is to look at an example. Let’s say that we want to
solve the equation

x3 − 5x2 + 3x+ 5 = 0 (1.1)

for an approximate solution x. We can easily estimate where the real solutions
are by finding the x-intercepts of the graph of y = x3−5x2+3x+5. Remember
that the total number of real or complex roots to any polynomial is its degree
(or order) which in this case is three. Also, when a polynomial has all real
coefficients as this one does all of the complex roots (if there are any) occur
in complex conjugate pairs. This particular polynomial has exactly three real
roots and no complex roots by looking at its graph below.

> with(plots): with(plottools):

> f:= x -> xˆ3 - 5*xˆ2 + 3*x + 5:

> roots f:= [fsolve(f(x), x, complex)];

roots f := [−0.7092753594, 1.806063434, 3.903211926]

> plot xintercepts:= seq(circle([roots f[j],0], .3, color = blue), j=1..3):

> plotf:= plot(f(x), x = -3..7, thickness = 2):

> display({plotf, plot xintercepts}, view = [-3..7,-4..6]);

–4

–2

2

4

6

y

–2 2 4 6
x

Figure 1.1: The three roots of the polynomial x3 − 5x2 + 3x + 5 are its three
x-intercepts (circled)

1.1 Geometry of the Newton-Raphson Method 3

Figure 1.1 clearly shows that our equation has three real solutions, with a
negative one near x = −1 and two positive ones near x = 2 and x = 4. Let’s
try to approximate the one near x = 4 as accurately as we can.

First, let’s see what fsolve will give us for just the solution near x = 4. It
has given us all the roots of this polynomial above if we use the complex op-
tion. fsolve uses many algorithms similar to and including the Newton-Raphson
method in combination to approximate solutions both to a single equation or
a square system of equations.

> fsolve(f(x), x, 3.5..4.5);
3.903211926

The idea that Raphson had was to take a value of x near x = 4, say x = 5,
and put in the tangent line to the graph of our function f(x) at x = 5. This tan-

gent line goes through the point (5, f(5)) = (5, 20) and has slope
df

dx
(5), where

df

dx
is the derivative function of f(x). Now Maple can easily compute both f(5)

and
df

dx
(5). The unapply command converts the expressions “diff(f(x), x)” into

the derivative function df(x).

> f(5);
20

> diff(f(x),x);
3x2 − 10x+ 3

> df:= unapply(diff(f(x),x),x);

df := x → 3 x2 − 10 x+ 3

> df(5);
28

So the slope of the tangent line to the graph of y = f(x) at the point (5, 20)

is 28 and the equation of this tangent line at x = 5 is y − f(5) =
df

dx
(5)(x− 5)

or y = 28x− 120. Let’s now graph together this tangent line and the original
function f(x).

> plot guess:= arrow([5,-10], [5,-4.5], .03, .15, .2, color = gold):

> plot xint:= arrow([30/7,-10], [30/7,-4.5], .03, .15, .2, color = blue):

> plot soln:= arrow([3.9,10], [3.9,2], .03, .15, .2, color = red):

> plotfwithtang:= plot([f(x), 28*x - 120], x = 3.5..5.5, color = [red, blue],
thickness = [3,2]):

4 Chapter 1. Newton-Raphson Method for a Single Equation

> display({plot guess, plotfwithtang, plot xint, plot soln});

–20

0

20y

4 4.5 5 5.5
x

Figure 1.2: Tangent line to our polynomial at x = 5

Upon inspection of Figure 1.2, note that the tangent line at x = 5 crosses the
x-axis much closer to our solution near x = 4 than our very rough estimate of
x = 5 for the placement of this tangent line. The x-intercept of this tangent line

is the solution for x to the tangent line’s equation y = f(5)+
df

dx
(5)(x− 5) = 0

which is

x = 5− f(5)

df

dx
(5)

=
30

7
≈ 4.285714286

(1.2)

So x-intercepts of tangent lines seem to move you closer to the x-intercepts
of their function f(x). This is what Raphson saw which Newton did not see
because Newton forgot to look at the geometry of the situation and instead he
concentrated on the algebra.

Raphson’s next idea was to try to move even closer to the root of f(x) (the
x-intercept of y = f(x) or solution to f(x) = 0) by repeating the tangent line,
but now at the point given by this new value of x = 4.285714286 which is the
x-intercept of the previous tangent line. Let’s do it repeating the above work
and see if Raphson was correct to do this. Let’s now call our starting guess
near the root by x0 = 5 and the x-intercept of the tangent line at x = 5 by
x1 = 4.285714286. The value of x1 is definitely closer to the root than the
starting guess x0.

> x0:= 5.:

> x1:= x0 - f(x0)/df(x0);

x1 := 4.285714286

1.1 Geometry of the Newton-Raphson Method 5

> f(x1);

4.73760934

> df(x1);

15.24489796

> f(x1) - x1*df(x1);

−60.59766764

So the slope of the tangent line to the graph of y = f(x) at the point
(x1, f(x1)) = (4.285714286, 4.73760934) is 15.24489796 and the equation of
this tangent line at x = x1 is

y − f(x1) =
df

dx
(x1)(x− x1)

or

y = f(x1) +
df

dx
(x1)(x − x1)

= 15.24489796x− 60.59766764

Let’s now graph (see Figure 1.3) together this tangent line and the original
function f(x).

> plot xint2:= arrow([3.97495,-10], [3.97495,-4.5], .03, .15, .2, color = blue):
> plot fwithtangs:= plot([f(x), 28*x - 120, 15.2449*x - 60.5977], x = 3.5..5.5,
color = [red, blue, blue], thickness = [4,2,2]):
> display({plot guess, plot fwithtangs, plot xint, plot xint2, plot soln}, view
= [3.5..5.3, -15..30]);

–10

0

10

20

30

y

4 4.5 5
x

Figure 1.3: Tangent lines at x = 5 and x = 4.28571

6 Chapter 1. Newton-Raphson Method for a Single Equation

Raphson clearly has a very good idea in the use of tangent lines to approxi-
mately solve single equations of the form f(x) = 0 if our picture above is truly
correct. Happily for both Raphson and us, this picture is right and successive
tangent lines and their x-intercepts do move closer and closer to the x-intercept
of their underlying function f(x).

The general formula for the x-intercept of the tangent line to the graph of
y = f(x) at the point where x = a is

x = a− f(a)

df

dx
(a)

, (1.3)

since the equation of the tangent line at x = a is

y = f(a) +
df

dx
(a)(x − a)

If you now solve

f(a) +
df

dx
(a)(x− a) = 0

for x, you will get equation (1.3).
Let’s use this formula below to get the successive x-intercepts for these

tangent lines. The values of these x-intercepts are clearly moving towards the
root of our polynomial which is roughly at x = 3.9 on the x-axis below the red
arrow in the above plots.

The number of digits is now set to twelve instead of the default of ten since
we want to get ten accurate digits when we round down to ten.

> Digits:= 12:

> x0:= 5.:

> x1:= x0 - f(x0)/df(x0);

x1 := 4.28571428571

> x2:= x1 - f(x1)/df(x1);

x2 := 3.97494740867

> x3:= x2 - f(x2)/df(x2);

x3 := 3.90652292594

> x4:= x3 - f(x3)/df(x3);

x4 := 3.90321950278

1.1 Geometry of the Newton-Raphson Method 7

> x5:= x4 - f(x4)/df(x4);

x5 := 3.90321192597

> x6:= x5 - f(x5)/df(x5);

x6 := 3.90321192590

> x7:= x6 - f(x6)/df(x6);

x7 := 3.90321192592

This is the answer accurate to ten decimal places that fsolve gave us of
x = 3.903211926. We perhaps got it the same way fsolve did since the Newton-
Raphson Method is part of fsolve. To get this answer accurate to ten decimal
places, it took only six repeated applications of the Newton-Raphson Method.
This is a very fast procedure even when our starting guess of x = 5 is not very
close to the root nearest to it.

It should be noted that you stop the Newton-Raphson Method when you
get a repetition in the value for two consecutive x-intercepts of your tangent
lines accurate to the number of digits you desire. This is the reason we could
could stop after we got x6 since x6 = x5 accurate to ten digits.

Newton’s Method will in general solve equations of the form f(x) = 0 for
the solution nearest a starting estimate of x = x0. It then creates a list of
values xn where each xn (the nth element of this list) is the x-intercept of the
tangent line to y = f(x) at the previous list value of x = xn−1. This gives the
general formula for the xn of

xn+1 = xn − f(xn)

df

dx
(xn)

(1.4)

starting with x0. Each xn is usually closer to being a solution to f(x) = 0 than
the previous xn−1. The xn can all be gotten from iterating the starting guess
x0 in the iteration function

g(x) = x− f(x)

df

dx
(x)

(1.5)

This means that xn+1 = g(xn) for all n starting with 0.
The method we are using is called iteration since it begins with a starting

guess value of x0 and then finds the iteration values x1, x2, . . . thereafter using

8 Chapter 1. Newton-Raphson Method for a Single Equation

the same formula g(x) based on the previous value. The function g(x) which
computes these iteration values is called the iterator.

The following procedure will table some values of this Newton sequence
of iterates from Example 1.1.1 and x0’s near our three solutions which you
must provide as x0. We will carry out n = 8 iterations of the Newton-Raphson
Method to generate the list of lists called newton. Try different list of values for
x0 to see how they affect the Newton list moving toward the solutions nearest
them. The starting list for x0 below was chosen from the graphs above so
that the tangents at these points will intersect the x-axis towards the solution
nearest it. We stop iterating with the iterator g(x) when two consecutive values
in the sequence of xn’s are the same to the accuracy desired.

We will use the three starting guesses for x0 of 0, 1, and 5 or the list [0., 1., 5.]
where the decimal point is used to tell Maple that we want decimal approxima-
tions and not exact values since to Maple any number with a decimal point in
it is considered an approximation. Without these decimal points Maple would
compute exact values giving us horrendous fractions for the values of our iter-
ates instead of decimal approximations.

> Digits:= 12:

> f:= x -> xˆ3 - 5*xˆ2 + 3*x + 5:

> df:= unapply(diff(f(x),x), x);

df := x → 3x2 − 10x+ 3

> x0:= [0., 1., 5.]:

> n := 8:

> g := unapply(x - f(x)/df(x), x);

g := x → x− x3 − 5 x2 + 3 x+ 5

3 x2 − 10 x+ 3

> newt:= proc(i) map(g, newt(i-1)) end:

> newt(1):= x0:

> newton:= [seq(newt(i), i = 1..n+1)];

[[0.0, 1.0, 5.0], [−1.66666666667, 2.0, 4.28571428571], [−1.00529100529,

1.80000000000, 3.97494740867], [−0.751331029986, 1.80606060606,

3.90652292594], [−0.710320317972, 1.80606343352, 3.90321950278],

[−0.709276029619, 1.80606343353, 3.90321192597], [−0.709275359437,

1.80606343355, 3.90321192590], [−0.709275359437, 1.80606343352,

3.90321192592], [−0.709275359437, 1.80606343353, 3.90321192589]]

1.1 Geometry of the Newton-Raphson Method 9

> evalf(fsolve(f(x),x,complex),10);

−0.7092753594, 1.806063434, 3.903211926

> evalf(newton[9],10);

[−0.7092753594, 1.806063434, 3.903211926]

The evalf command has rounded the values in the list newton[9] to ten
digits and it agrees to ten digits the results from fsolve. You have just seen the
Newton-Raphson Method solve for the three real roots of our polynomial f(x)
simultaneously working on finding each root based on three different starting
guesses near them.

The next section will continue looking at more examples of the uses of the
Newton-Raphson algorithm. It will look for complex roots to polynomials,
solve for thirteenth roots of numbers, find inverse trignometric function values.

Before we conclude this section, let’s animate the tangent lines to our cu-
bic polynomial f(x) and see them moving along the polynomial’s graph. This
might help you understand why the Newton-Raphson Method works geomet-
rically if you watch where these tangent lines’ x-intercepts are going. We will
plot 101 tangent lines for equally spaced points from x = −2 to x = 6. Figure
1.4 shows nine of the tangent lines from the animation.

> f:= x -> xˆ3 - 5*xˆ2 + 3*x + 5:

> plotf:= plot(f(x), x = -2.5..6.5, thickness = 3, color = red, view = -50..70):

> df:= unapply(diff(f(x),x), x):

> ptsoftangency:= [seq(-2. + (6+2)/100*(K-1),K=1..101)]:

> tangentlines:= [seq(f(ptsoftangency[K]) + df(ptsoftangency[K])*(x - ptsoft-
angency[K]), K = 1..101)]:

> plotsoftanglines:= [seq(plot(tangentlines[K], x=-2.5..6.5, thickness = 2, color
= blue, view = -50..70), K=1..101)]:

> display([seq(display(plotf, plotsoftanglines[K]), K = 1..101)], insequence =
true);

–40

–20

0

20

40

60

y

–2 2 4 6x

Figure 1.4: Nine frames in the tangent line animation, at x = −2,−1, . . . , 5, 6

10 Chapter 1. Newton-Raphson Method for a Single Equation

1.2 Examples of the Newton-Raphson Method

In this section, we will use the machinery developed in Section 1.1, we will
apply the Newton-Raphson Method to specific problems.

Example 1.2.1. As example of the power of Newton’s method, we will use it
to find all the roots of the polynomial

8x5 − 3x4 + 2x3 + 9x− 5 (1.6)

both real and complex, and then to use these five roots to factor this polynomial
completely. Since this polynomial has all real coefficients, the complex roots
occur in complex conjugate pairs. This fact about the roots usually means we
only need find roughly half as many roots as the degree of the polynomial. If
you graph this polynomial (Figures 1.5 and 1.6) you will see that it probably
only has one real root.

Why does an odd degree polynomial with all real coefficients have to have
at least one real root? It is because there are going to be an even number
of complex roots since they occur in complex conjugate pairs while the total
number of all the roots must be the degree of the polynomial which is odd.

> Digits:= 10:

> f:= x -> 8*xˆ5-3*xˆ4+2*xˆ3+9*x-5:

> with(plots):

> plot(f(x), x = -10..10);

–500000

500000
y

–10 –5 5 10
x

Figure 1.5: Graph of f(x) = 8x5 − 3x4 + 2x3 + 9x− 5

1.2 Examples of the Newton-Raphson Method 11

> plot(f(x), x = -3..3);

–2000

–1000

0

1000y

–3 –2 –1 1 2 3
x

Figure 1.6: Graph of f(x) = 8x5 − 3x4 + 2x3 + 9x− 5

> df:= unapply(diff(f(x),x),x);

df := x → 40x4 − 12x3 + 6x2 + 9

> x0:= [1., 1.+I, -1.-I]:

> g:= unapply(x - f(x)/df(x), x);

g := x → x− 8 x5 − 3 x4 + 2 x3 + 9 x− 5

40 x4 − 12 x3 + 6 x2 + 9

> newt:= proc(i) map(g, newt(i-1)) end:

> newt(1):= x0:

> n:= 8:

> newton:= [seq(newt(i), i = 1..8)];

newton := [[1., 1.+ 1.I,−1.− 1.I], [0.7441860465, 0.8299022921

+ 0.8664659252I,−0.8350302309− 0.8574919332I], [0.5697030175,

0.7080864702+ 0.8082690821I,−0.7475807128− 0.7820854080I],

[0.5186129098, 0.6518047690+ 0.8166926208I,−0.7231360472

− 0.7605178310I], [0.5161116670, 0.6507190475+ 0.8253549920I,

− 0.7214092342− 0.7588957152I], [0.5161066849, 0.6508476751

+ 0.8252171251I,−0.7214010980− 0.7588870360I], [0.5161066849,

0.6508477553+ 0.8252171632I,−0.7214010978− 0.7588870357I],

[0.5161066849, 0.6508477553+ 0.8252171633I,−0.7214010978

− 0.7588870357I]]

12 Chapter 1. Newton-Raphson Method for a Single Equation

> rootsf:= [op({op(newton[8]), op(map(conjugate, newton[8]))})];

rootsf := [0.5161066849,−0.7214010978− 0.7588870357I,−0.7214010978

+ 0.7588870357I, 0.6508477553− 0.8252171633I, 0.6508477553

+ 0.8252171633I]

> p:= coeff(f(x),xˆ5)*mul(x-rootsf[j], j=1..5);

p := 8(x− 0.5161066849)(x+ 0.7214010978+ 0.7588870357I)×
(x+ 0.7214010978− 0.7588870357I)(x− 0.6508477553+

0.8252171633I)(x− 0.6508477553− 0.8252171633I)

> expand(p);

8x5 − 2.999999999x4 + (8. 10−10I)x+ 1.999999999x3 − 1.6 10−9x2

+ 9.000000000x− 4.999999998+ 4.159135129 10−10)I

> f(x);
8x5 − 3x4 + 2x3 + 9x− 5

> factor(f(x),complex);

8.(x + 0.7214010978+ 0.7588870357I)(x+ 0.7214010978− 0.7588870357I)×
(x − 0.5161066849)(x− 0.6508477554+ 0.8252171634I)×
(x − 0.6508477554− 0.8252171634I)

The polynomial p above gives the complete factoring of f(x) using the
roots found from Newton’s method. When we expand p we do not get f(x)
back exactly, but we are very close to it due to rounding error in our roots. The
factor command in Maple using the complex option will factor the polynomial
completely also.

Example 1.2.2. Now let’s use the Newton-Raphson Method to solve the equa-
tion

ex = cos(2x) + 5 (1.7)

for its single real solution where we actually solve

f(x) = ex − cos(2x)− 5 = 0

We will get that the solution is x = 1.400545514 after five iterations starting
with x0 = 2. In order to see where the solution to this equation lies, we will plot
each side of the equation separately and find their intersection point (Figure
1.7).

1.2 Examples of the Newton-Raphson Method 13

> h:= x -> exp(x):

> k:= x -> cos(2*x)+5:

> plot([h(x),k(x)], x = 0..3, color = [red,blue], thickness = 2);

5

10

15

20

y

0 1 2 3
x

Figure 1.7: The intersection of h(x) = ex and k(x) = cos(2x) + 5 occurs close
to x = 1.5

> f:= unapply(h(x) - k(x), x);

f := x → xx − cos(2x)− 5

> df:= unapply(diff(f(x),x),x);

df := x → ex + 2 sin(2x)

> x0:= 2.:

> g:= unapply(x - f(x)/df(x), x);

g := x → x− ex − cos (2 x)− 5

ex + 2 sin (2 x)

> newt:= proc(i) g(newt(i-1)) end:

> newt(1):= x0:

> n:= 5:

> newton:= [seq(newt(i), i = 1..n+1)];

newton := [2., 1.482133429, 1.400821839, 1.400545516,

1.400545514, 1.400545514]

14 Chapter 1. Newton-Raphson Method for a Single Equation

Example 1.2.3. As our next example of the Newton-Raphson Method, we
use it to find arctan(1.26195) from the function tan(x) alone. If we let x =
arctan(1.26195), then by taking tangent of both sides we have

tan(x) = tan(arctan(1.26195)) = 1.26195

Now rewriting this as f(x) = tan(x)− 1.26195 = 0, we have our function f(x)

which has the arctan(1.26195) as root. Since arctan(z) is always between −π

2
and

π

2
, we let x0 = 1 because if z > 0, then arctan(z) > 0. Using twelve digits,

the end result of the Newton-Raphson Method should be accurate to ten digits.

> Digits:= 12:

> f:= x -> tan(x) - 1.26195:

> df:= unapply(diff(f(x),x),x);

df := x → 1 + tan(x)2

> x0:= 1.:

> g:= unapply(x - f(x)/df(x), x);

g := x → x− tan (x)− 1.26195

1 + (tan (x))
2

> newt:= proc(i) g(newt(i-1)) end:

> newt(1):= x0:

> n:= 5:

> newton:= [seq(newt(i), i = 1..6)];

newton := [1., 0.913748036398, 0.900908331438, 0.900691798443,

0.900691739234, 0.900691739234]

> evalf(newton[6],10);
0.9006917392

> evalf(arctan(1.26195),10);

0.9006917392

1.2 Examples of the Newton-Raphson Method 15

Example 1.2.4. As the last example of this section, we use the Method to
find

13
√
8319407225, or 83194072251/13. This thirteenth root can be found by

letting x = 83194072251/13 and then rewriting this equation without the root
as

x13 − 8319407225 = 0 (1.8)

We then have
f(x) = x13 − 8319407225 = 0 (1.9)

Now we have our function f(x) for the Method. Since

513 = 1220703125< 8319407225 < 13060694016 = 613

we can take the starting guess to be either x0 = 5 or x0 = 6 since we usually
choose an integer for the starting value x0 (although not required). You could
also plot y = f(x) and look for the x-intercept of this graph.

> 5ˆ13;
1220703125

> 6ˆ13;
13060694016

> f:= x -> xˆ13-8319407225:

> df:= unapply(diff(f(x),x),x);

df := x → 13 x12

> x0:= 6.:

> g:= unapply(x - f(x)/df(x), x);

g := x → x− 1

13

x13 − 8319407225

x12

> newt:= proc(i) g(newt(i-1)) end:

> newt(1):= x0:

> n:= 5:

> newton:= [seq(newt(i), i = 1..n+1)];

newton := [6., 5.83245253211, 5.79678752512, 5.79541014785,

5.79540818028, 5.79540818028]

> evalf(newton[6],10);
5.795408180

> evalf(8319407225ˆ(1/13),10);

5.795408180

16 Chapter 1. Newton-Raphson Method for a Single Equation

These last two examples of the Method illustrate that it can be used to
find the values of inverse trignometric functions using the regular trignometric
functions and to get roots of numbers using powers. It can also find the values
of logarithms using exponentials. The Method also has a version which allows
you to solve square systems of non-linear equations.

1.3 An Example of When the Newton-Raphson

Method Does the Unexpected

The next example of the Method will show you that if you start with an x0

which isn’t very good, then you may slowly move towards a solution of f(x) = 0,
but not the nearest one to where you started.

Example 1.3.1. Let’s solve the trigonometric equation sin(x) = 0 with a
starting value of x0 = 1.97603146838. You should expect that we will get the
value of π using the Method. The graph of sin(x) is given in Figure 1.8 below.

> Digits:= 12:

> f:= x -> sin(x):

> plot(f(x), x=0..2*Pi);

–1

–0.5

0

0.5

1

y

2 4 6
x

Figure 1.8: Graph of f(x) = sin(x) on the interval [0, 2π]

> n:= 20:

> x0:= 1.97603146838:

> df:= unapply(diff(f(x),x),x);

df := x → cos(x)

> g:= unapply(x - f(x)/df(x), x);

g :=→ x− sin(x)

cos(x)

1.3 When the Newton-Raphson Method Does the Unexpected 17

> newt:= proc(i) evalf(g(newt(i-1))) end:

> newt(1):= x0;
newt(1) := 1.97603146838

> newton:= [seq(newt(i), i = 1..n+1)];

newton := [1.97603146838, 4.30715383881, 1.97603146831, 4.30715383919,

1.97603146625, 4.30715385038, 1.97603140544, 4.30715418084,

1.97602960967, 4.30716393934, 1.97597657917, 4.30745215919,

1.97440902034, 4.31601007571, 1.92670276467, 4.61678041455,

− 5.81064450865,−6.32181094255,−6.28316608667,

− 6.28318530718,−6.28318530718]

> evalf(-2*Pi,12);
−6.28318530718

Now lets plot the first two tangent lines for Newton’s method to y = f(x) =
sin(x). It will explain what we see in this sequence of values which are moving
towards −2π (see Figure 1.9).

> x1:= newt(2);
x1 := 4.30715383881

> plot([f(x), f(x0) + df(x0)*(x-x0), f(x1) + df(x1)*(x-x1)], x = 0..2*Pi, color
= [red, blue, green], thickness = [3,2,2]);

–1

0

1y

2 4 6
x

Figure 1.9: Graph of f(x) = sin(x) and parallel tangent lines

For this starting value of x0 = 1.97603146838, the Newton sequence to
twelve digits moves to −2π which is not the closest solution to sin(x) = 0

18 Chapter 1. Newton-Raphson Method for a Single Equation

to x0, which is π. The values in this sequence approximately alternate each
other for a long time until suddenly they move off towards −2π. They do this
because the tangent lines used in the Method are approximately parallel lines
where each has x-intercept approximately the x-coordinate value of the other.
You should see what happens to this sequence of iterates if you increase the
number of digits to sixteen.

The Newton-Raphson Method works quickly to give very good accuracy.
It normally takes no more than five to ten iterations from a reasonable initial
guess x0 to get the solution accurate to ten or more decimal places. Each
iteration usually produces greater accuracy, and you reach the accuracy you
want when two consecutive iterations agree in value to this accuracy.

Chapter 2

The Newton-Raphson

Method for Square Systems

of Equations

2.1 Newton-Raphson for Two Equations in Two

Unknowns

In this section we will discuss the Newton-Raphson method for solving square
(as many equations as variables) systems of two non-linear equations

f(x, y) = 0, g(x, y) = 0

in the two variables x and y. In order to do this we must combine these two
equations into a single equation of the form F (x, y) = 0 where F must give us
a two component column vector and 0 is also the two component zero column
vector, that is,

F (x, y) =

[

f(x, y)
g(x, y)

]

(2.1)

and 0 =

[

0
0

]

. Then clearly the equation F (x, y) = 0 is the same as

[

f(x, y)
g(x, y)

]

=

[

0
0

]

(2.2)

which is equivalent to the system of two equations f(x, y) = 0 and g(x, y) = 0.
Now let F : R2 → R

2 be a continuous function which has continuous first
partial derivatives where F is defined as in equation (2.1) for variables x, y and
component functions f(x, y), g(x, y). We wish to solve the equation F (x, y) =

19

20 Chapter 2. Newton-Raphson Method for Square Systems

0 which is really solving simultaneously the square system of two non-linear
equations given by f(x, y) = 0 and g(x, y) = 0.

In order to do this, we shall have to generalize the one variable Newton-
Raphson method iterator formula for solving the equation f(x) = 0 given by
the sequence pk for p0 the starting guess where

pk+1 = pk − f(pk)

df

dx
(pk)

(2.3)

or
pk+1 = g(pk)

where

g(pk) = pk −
f(pk)

df

dx
(pk)

(2.4)

is the (single equation) Newton-Raphson iterator.
To see how this can be done, you must realize that now in the two equation

case that

p0 =

[

x0

y0

]

(2.5)

is our starting guess as a point in the xy-plane written as a column vector,

pk =

[

xk

yk

]

(2.6)

is the kth iteration of our method, and

F (pk) =

[

f(xk, yk)
g(xk, yk)

]

are all two component column vectors in R
2 and not numbers as in the single

variable case. Thus, dividing a two component column vector by a derivative
requires that we be dividing by a 2 × 2 matrix, or multiplying by the inverse

of this matrix. Thus, we need to replace
df

dx
in our old iterator g(x) by a 2× 2

matrix consisting of the four partial derivatives of F (x, y), which are
∂f

∂x
,
∂f

∂y
,

∂g

∂x
, and

∂g

∂y
.

The choice of this new derivative matrix is the 2×2 Jacobian matrix J(x, y),
of F(x,y), given by the 2× 2 matrix

J(x, y) =

∂f

∂x

∂f

∂y

∂g

∂x

∂g

∂y

(2.7)

2.1 Newton-Raphson for Two Equations in Two Unknowns 21

Other choices for this 2 × 2 matrix of partial derivatives are possible and you
should see if they will also work in place of this Jacobian matrix, but this
Jacobian matrix seems most logical if you think about the fact that for F (x, y),
the first row is f(x, y) and g(x, y) is in the second row while the variables are
given as x first and y second in all these functions. Thus, the Newton-Raphson
array (list or sequence) is now for a starting vector p0, as defined in equation
(2.5), given by

pk+1 = pk − (J(pk))
−1

F (pk) (2.8)

where the vector F (pk) is multiplied on its left by the inverse of the Jacobian
matrix J(x, y) evaluated at pk, i.e., J(pk) = J(xk, yk).

Note that finding (J(pk))
−1

in each iteration is a formidable task if the
system of equations is large, say 25× 25 or more, and so at each iteration you
can instead solve for pk+1 by solving the square linear system of equations

J(pk) pk+1 = J(pk) pk − F (pk)

where the components of pk+1 are the unknowns. Of course, it is easy to find
pk+1 directly if you are in a small number of equations case such as ours using
the inverse matrix.

Example 2.1.1. Let F : R2 → R
2 be given in the form of equation (2.1), for

f(x, y) =
1

64
(x− 11)2 − 1

100
(y − 7)2 − 1, g(x, y) = (x − 3)2 + (y − 1)2 − 144

We wish to apply the Newton-Raphson method to solve F (x, y) =

[

0
0

]

or

equivalently the square system

f(x, y) = 0, g(x, y) = 0

The solutions are the intersection points of these two curves f(x, y) = 0 which
is a hyperbola, and g(x, y) = 0 which is a circle, and is depicted in Figure 2.1.

> with(linalg): with(plots):

> f:= (x,y) -> (x-11)ˆ2/64 - (y-7)ˆ2/100 - 1:

> g:= (x,y) -> (x-3)ˆ2 + (y-1)ˆ2 - 400:

> plotf:= implicitplot(f(x,y) = 0, x = -25..25, y = -25..25, color = blue, grid
= [50,50]):

> plotg:= implicitplot(g(x,y) = 0, x = -25..25, y = -25..25, color = red, grid
= [50,50]):

22 Chapter 2. Newton-Raphson Method for Square Systems

> display({plotf, plotg}, scaling = constrained);

–20

–10

10

20

y

–10 10 20
x

Figure 2.1: The hyperbola f(x, y) = 0 and circle g(x, y) = 0 intersect at four
points.

It is clear from this plot of the circle and hyperbola that this system of
equations has exactly four real solutions which are the intersection points of
these two curves.

> F:= (x,y) -> vector([f(x,y), g(x,y)]):

> F(-2.,20);
[

−0.049375000 −14.
]

> jacobian(F(x,y), [x,y]);

[

1
32 x− 11

32 − 1
50 y +

7
50

2 x− 6 2 y − 2

]

The system iterator for Newton-Raphson will be calledG and it is a function
of x and y which outputs a two element list instead of a two component column
vector. This was done in order to make the use of G the most convenient when
iterating.

The iterates pk are given by newt [k] with starting guess p0 given by newt [0].
In this case, since we graphed the two equations, we can find our starting
guesses for the four solutions from this graph. Without a graph, you would
have to plug guesses into F (x, y) until you got a result close to the zero column
vector; graphing is so much faster if we have a machine to do it for us. The
number of iterations we will do is n which we take to be six below.

2.1 Newton-Raphson for Two Equations in Two Unknowns 23

> G:= unapply(convert(simplify(evalm(vector([x, y]) - jacobian(F(x,y),[x,y])ˆ
(-1)&*F(x, y))), list), x, y);

G := (x, y) →
[

1

2

41 x2y − 137 x2 + 5599 y− 96 y2 − 43039

41 xy − 137 x− 323 y+ 611
,

−1

2

−41 xy2 + 323 y2 + 200 x2 − 10391 x+ 109173

41 xy − 137 x− 323 y+ 611

]

> G(-.25+.433*I,.433-.75*I);

[−35.67946232+ 9.764850390I,−92.91549690+ 40.44912122I]

> n:= 6:
> newt[0]:= [-2., 20]:
> for i from 1 to n do

newt[i]:= G(newt[i-1][1], newt[i-1][2]);
od:

> seq(newt[i-1],i=1..n+1);

[−2., 20], [−2.305821206, 20.28794179], [−2.302041868, 20.28440766],

[−2.302041289, 20.28440713], [−2.302041292, 20.28440712],

[−2.302041294, 20.28440712], [−2.302041294, 20.28440712]

> root1 := newt[6];

root1 := [−2.302041294, 20.28440712]

So the root of the system of equations closest to the point (−2, 20) is newt [6]
which we have called root1. We also check this root using fsolve where we must
tell it where to look in order to get back just this single root.

After each computation of the table newt we will unassign it so that it is
cleared to be used again without worrying that if we change n to a smaller
value we may get leftover values in newt from its previous use. You can clear
newt using the unassign command or by saying “newt:= ‘newt’;”.

> fsolve({f(x,y) = 0, g(x,y) = 0}, {x, y}, {x=-3..0,y=15..25});

{x = −2.302041291, y = 20.28440712}

> unassign(’newt’);

> n:= 7:

> newt[0]:= [20., 13]:

> for i from 1 to n do

24 Chapter 2. Newton-Raphson Method for Square Systems

newt[i]:= G(newt[i-1][1], newt[i-1][2]);
od:

> seq(newt[i-1],i=1..n+1);

[20., 13], [19.84349030, 11.84672207], [19.85957225, 11.75930869],

[19.85966012, 11.75880390], [19.85966010, 11.75880388],

[19.85966012, 11.75880390], [19.85966010, 11.75880388],

[19.85966012, 11.75880390]

> root2:= newt[7];

root2 := [19.85966012, 11.75880390]

> unassign(’newt’);

> newt[0]:= [20., -4]:

> newt[0]:= [20., 13]:

> for i from 1 to n do
newt[i]:= G(newt[i-1][1], newt[i-1][2]);

od:

> seq(newt[i-1],i=1..n+1);

[20.,−4], [22.75576876,−3.230386204], [22.52089182,−3.359663132],

[22.51902586,−3.359774453], [22.51902576,−3.359774536],

[22.51902576,−3.359774542], [22.51902576,−3.359774539],

[22.51902574,−3.359774540]

> root3:= newt[6];

root3 := [22.51902576,−3.359774539]

> unassign(‘newt’);

> newt[0]:= [-10., -16]:

> for i from 1 to n do
newt[i]:= G(newt[i-1][1], newt[i-1][2]);

od:

> seq(newt[i-1],i=1..n+1);

[−10.,−16], [−8.625683855,−15.34506528], [−8.564570385,−15.31763460],

[−8.564449435,−15.31758282], [−8.564449440,−15.31758282],

[−8.564449445,−15.31758282], [−8.564449435,−15.31758282],

[−8.564449440,−15.31758282]

2.1 Newton-Raphson for Two Equations in Two Unknowns 25

> root4:= newt[6];

root4 := [−8.564449435,−15.31758282]

Now that we have all four real roots of this system, we can plot these four
points with the hyperbola and circle to see that they are the correct intersec-
tion points (see Figure 2.2).

> with(plottools):

> circle root1:= circle(root1, 1):

> circle root2:= circle(root2, 1):

> circle root3:= circle(root3, 1):

> circle root4:= circle(root4, 1):

> display({plotf, plotg, circle root1, circle root2, circle root3, circle root4},
scaling = constrained);

–20

–10

10

20

y

–10 10 20
x

Figure 2.2: Intersection of the hyperbola f(x, y) = 0 and circle g(x, y) = 0 are
the four points found by Newton-Raphson.

Example 2.1.2. Let F : R2 → R
2 be given in the form of equation (2.1), for

f(x, y) = 3x2y − y3 + 5x− 8, g(x, y) = 3xy2 − x3 − 4y + 2

We wish to apply Newton’s method to solve F (x, y) =

[

0
0

]

or equivalently

the square system

f(x, y) = 0, g(x, y) = 0

26 Chapter 2. Newton-Raphson Method for Square Systems

The real solutions are the real intersection points of these two curves.

> with(linalg): with(plots):

> f:= (x,y) -> 3*xˆ2*y-yˆ3+5*x-8:

> g:= (x,y) -> 3*x*yˆ2-xˆ3-4*y+2:

> plotf:= implicitplot(f(x,y) = 0, x = -10..10, y = -10..10, color = blue, grid
= [50,50]):

> plotg:= implicitplot(g(x,y) = 0, x = -10..10, y = -10..10, color = red, grid
= [50,50]):

> display({plotf, plotg});

–10

–5

5

10

y

–10 –5 5 10
x

Figure 2.3: Intersection of the level curves f(x, y) = 0 and g(x, y) = 0

It is clear from Figure 2.3 that this system of equations has exactly three
real solutions which are the intersection points of these two curves. How many
total real and complex solutions are there to this system?

> F:= (x,y) -> vector([f(x,y), g(x,y)]):

> F(-2.+I, 5-3*I);
[

1.+ 116.I −22.+ 229.I
]

> jacobian(F(x,y), [x,y]);

[

6 xy + 5 3 x2 − 3 y2

3 y2 − 3 x2 6 xy − 4

]

>G:= unapply(convert(simplify(evalm(vector([x, y]) - jacobian(F(x,y),[x,y])ˆ(-

2.1 Newton-Raphson for Two Equations in Two Unknowns 27

1)&*F(x, y))), list), x, y);

G := (x, y) →
[

2
(

6 x3y2 − 12 x2y + 3 x5 + 3 xy4 + 24 xy + 4 y3 − 16 + 3 x2 − 3 y2
)

18 x2y2 + 6 xy − 20 + 9 x4 + 9 y4
,

2
(

6 x2y3 + 15 xy2 + 3 yx4 + 3 y5 − 5 x3 + 12 x2 − 12 y2 − 6 xy − 5
)

18 x2y2 + 6 xy − 20 + 9 x4 + 9 y4

]

> G(-.25+.433*I,.433-.75*I);

[1.067211700− .3138214174I,−0.05450721154− 0.4714997210I

> n:= 12:

> unassign(‘newt’):

> newt[0]:= [7.-10*I, -5+3*I]:

> for i from 1 to n do
newt[i]:= G(newt[i-1][1], newt[i-1][2]);

od:

> seq(newt[i-1],i=1..n+1);

[7.− 10.I,−5 + 3I],

[4.716076290− 6.600715228I,−3.382974902+ 2.012179590I],

[3.224169736− 4.308649374I,−2.326626794+ 1.372634953I],

[2.283146120− 2.754133252I,−1.643936873+ 0.9907359528I],

[1.742859710− 1.716145676I,−1.178525033+ 0.8220028622I],

[1.465295509− 1.093767693I,−0.7709379106+ 0.7882814566I],

[1.292418266− 0.7605470184I,−0.3991705530+ 0.7485523402I],

[1.204529252− 0.5825119536I,−0.1451240359+ 0.6817317358I],

[1.196760919− 0.5156573282I,−0.05289160786+ 0.6188832694I],

[1.202567805− 0.5094748562I,−0.04975287894+ 0.6035737078I],

[1.202681506− 0.5095861122I,−0.05002819636+ 0.6035124202I],

[1.202681462− 0.5095860764I,−0.05002810388+ 0.6035124460I],

[1.202681463− 0.5095860762I,−0.05002810432+ 0.6035124462I]

> F(newt[12][1], newt[12][2]);

[

7. 10−9 + 1. 10−9I −2.8 10−9 + 3. 10−9I
]

28 Chapter 2. Newton-Raphson Method for Square Systems

This last example indicates that we have at least one complex solution to
this real system of equations.

Conclusions: (1) It should be clear from the above examples that even the
system of equations version of the Newton-Raphson method is very fast! It also
works to generate complex solutions as long as the starting value of newt [0] is
also complex when your equations are real. Redo the above example to see if
you can find another complex solution. Is the complex conjugate of a solution
in the last example also a solution?

(2) Also, rewrite the code above so that no inverse of the Jacobian is needed
since this is impractical for large matrices and systems of equations.

(3) Now try using the Newton-Raphson method to solve the system

(x − 4)2 + (y − 9)2 = 25, (x− 3)2 + (y − 7)2 = 36

for both solutions. The two real solutions here are the intersection points of
these two circles. Are there any complex solutions?

2.2 Newton-Raphson for Three Equations in

Three Unknowns

In this section we will look at an example of using the system version of the
Newton-Raphson method to solve a 3 × 3 system of equations which are all
spheres in space.

Example 2.2.1. Our three spheres have the equations

(x− 5)2 + (y − 9)2 + (z − 4)2 = 49

(x− 2)2 + (y − 7)2 + (z − 13)2 = 100

(x− 6)2 + (y − 11)2 + (z − 10)2 = 64

(2.9)

Let’s now plot all three spheres and see if we can find any real intersection
points of all three spheres (see Figure 2.4).

> with(linalg): with(plots):

> f:= (x,y,z) -> (x-5)ˆ2 + (y-9)ˆ2 + (z-4)ˆ2 - 49:

> g:= (x,y,z) -> (x-2)ˆ2 + (y-7)ˆ2 + (z-13)ˆ2 - 100:

> h:= (x,y,z) -> (x-6)ˆ2 + (y-11)ˆ2 + (z-10)ˆ2 - 64:

> plotf:= implicitplot3d(f(x,y,z) = 0, x = -25..25, y = -6..25, z = -6..25, color
= blue, grid=[20,20,20]):

> plotg:= implicitplot3d(g(x,y,z) = 0, x = -25..25, y = -6..25, z = -6..25, color
= red, grid=[20,20,20]):

2.1 Newton-Raphson for Three Equations in Three Unknowns 29

> ploth:= implicitplot3d(h(x,y,z) = 0, x = -25..25, y = -6..25, z = -6..25, color
= green, grid=[20,20,20]):

> display({plotf, plotg, ploth}, axes = boxed, scaling = constrained);

–20
0 10 20
x 0 10 20

y

0

10

20

z

Figure 2.4: Intersection of three spheres

It is clear from this plot of the three spheres that this system of equations
has exactly two real solutions which are the intersection points of these three
spheres near the points (−2, 14, 6) and (8, 5, 7).

We now use the Newton-Raphson system method to solve our problem
where F : R3 → R

3 be given by

F (x, y, z) =

f(x, y, z)
g(x, y, z)
h(x, y, z)

 (2.10)

for

f(x, y, z) = (x− 5)2 + (y − 9)2 + (z − 4)2 − 49

g(x, y, z) = (x− 2)2 + (y − 7)2 + (z − 13)2 − 100

h(x, y, z) = (x− 6)2 + (y − 11)2 + (z − 10)2 − 64

(2.11)

We wish to apply the Newton-Raphson method to solve

F (x, y, z) =

0
0
0

> F:= (x,y,z) -> vector([f(x,y,z), g(x,y,z), h(x,y,z)]):

> F(-2.,14,6);
[

29. 14. 25.
]

30 Chapter 2. Newton-Raphson Method for Square Systems

> jacobian(F(x,y,z), [x,y,z]);

2 x− 10 2 y − 18 2 z − 8
2 x− 4 2 y − 14 2 z − 26
2 x− 12 2 y − 22 2 z − 20

The system iterator for Newton-Raphson will be calledG and it is a function
of x, y, and z which outputs a three element list instead of a three component
column vector. This was done in order to make the use ofG the most convenient
when iterating.

The iterates pk are given by newt [k] with starting guess p0 given by newt [0].
In this case, since we graphed the three equations, we can find our starting
guesses for the two solutions from this graph. Without a graph, you would
have to plug guesses into F (x, y, z) until you got a result close to the zero col-
umn vector; graphing is so much faster. The number of iterations we will do is
n which we take to be seven below.

> G:= unapply(convert(simplify(evalm(vector([x, y, z]) - jacobian(F(x, y, z),
[x, y, z])ˆ (-1)&*F(x, y, z))), list), x, y, z);

G := (x, y) →
[

3118− 169 z − 393 y+ 15 x2 + 15 y2 + 15 z2

30 x− 27 y + 4 z + 77
,

−1

2

−409 z − 786 x+ 27 x2 + 27 y2 + 27 z2 + 3595

30 x− 27 y + 4 z + 77
,

1

2

1699 + 338 x− 409 y + 4 x2 + 4 y2 + 4 z2

30 x− 27 y + 4 z + 77

]

> G(-2.,14,6);

[−0.4213649852, 13.47922848, 5.577151335]

> n:= 7:

> newt[0]:= [-2., 14, 6]:

> for i from 1 to n do
newt[i]:= G(newt[i-1][1], newt[i-1][2], newt[i-1][3]);

od:

> seq(newt[i-1],i=1..n+1);

[−2., 14, 6],

[−.4213649852, 13.47922848, 5.577151335],

[−.2622019058, 13.33598171, 5.598373075],

[−.2596155823, 13.33365402, 5.598717920],

[−.2596148955, 13.33365340, 5.598718015],

2.1 Newton-Raphson for Three Equations in Three Unknowns 31

[−.2596148984, 13.33365341, 5.598718015],

[−.2596149018, 13.33365340, 5.598718015],

[−.2596148982, 13.33365340, 5.598718015]

> root1 := newt[7];

root1 := [−.2596148982, 13.33365340, 5.598718015]

> F(root1[1], root1[2], root1[3]);

[

−4. 10−8 −1.0 10−7 −3. 10−8
]

> fsolve({f(x, y, z) = 0, g(x, y, z) = 0, h(x, y, z)=0}, {x, y, z}, {x=-4..0,
y=10..18, z=0..12});

{x = −.2596148966, y = 13.33365341, z = 5.598718014}

So the root of the system of equations closest to the point (−2, 14, 6) is
newt [7] which we have called root1 . We also checked this root in two ways by
first plugging it back in the function F to see if we get very close to zero (which
we do) and then by using fsolve where we must tell it where to look in order
to get back just this single root.

After each computation of the table newt we will unassign it so that it is
cleared to be used again without worrying that if we change n to a smaller
value we may get leftover values in newt from its previous use. You can clear
newt using the unassign command or by saying “newt:= ‘newt’;”.

> unassign(’newt’);

> n:= 10:

> newt[0]:= [8., 5, 7]:

> for i from 1 to n do
newt[i]:= G(newt[i-1][1], newt[i-1][2], newt[i-1][3]);

od:

> seq(newt[i-1],i=1..n+1);

[8., 5, 7],

[9.714285714, 4.357142857, 6.928571430],

[9.533470118, 4.519876898, 6.904462680],

[9.530132750, 4.522880526, 6.904017705],

[9.530131613, 4.522881542, 6.904017550],

[9.530131612, 4.522881554, 6.904017545],

32 Chapter 2. Newton-Raphson Method for Square Systems

[9.530131611, 4.522881541, 6.904017545],

[9.530131612, 4.522881544, 6.904017550],

[9.530131612, 4.522881538, 6.904017550],

[9.530131612, 4.522881536, 6.904017545],

[9.530131612, 4.522881542, 6.904017550]

> root2:= newt[10];

root2 := [9.530131612, 4.522881542, 6.904017550]

> F(root2[1], root2[2], root2[3]);

[

4. 10−8 −3. 10−7 5. 10−8
]

> fsolve({f(x,y,z) = 0, g(x,y,z) = 0, h(x,y,z) = 0}, {x, y, z}, {x=5..15, y=0..10,
z=0..14});

{x = 9.530131614, y = 4.522881547, z = 6.904017549}

Now we will start with a complex guess to see if our system might have any
complex solutions.

> unassign(’newt’);

> n:= 10:

> newt[0]:= [15.-20*I, -14+8*I, -50-9*I]:

> for i from 1 to n do
newt[i]:= G(newt[i-1][1], newt[i-1][2], newt[i-1][3]);

od:

> seq(newt[i-1],i=1..n+1);

[15.− 20.I,−14 + 8I,−50− 9I], [30.72301499+ 36.44398407I,

− 14.55071349− 32.79958566I, 9.729735330+ 4.859197876I],

[17.83472141+ 18.00464381I,−2.951249272− 16.20417943I,

8.011296190+ 2.400619174I], [11.55226588+ 8.569543596I,

2.702960707− 7.712589245I, 7.173635450+ 1.142605814I],

[8.777004113+ 3.438297071I, 5.200696300− 3.094467366I,

6.803600550+ .4584396097I], [8.418505686+ .2976097941I,

5.523344885− 0.2678488144I, 6.755800760+ 0.03968130744I],

[9.673970474− 0.09876135077I, 4.393426578+ 0.08888521560I,

6.923196065− 0.01316818010I], [9.531271615− 0.002796971041I,

2.1 Newton-Raphson for Three Equations in Three Unknowns 33

4.521855548+ 0.002517273967I, 6.904169550− 0.0003729294942I],

[9.530130955− 6.516297833 10−7I, 4.522882147+ 5.864707365 10−7I,

6.904017460− 8.688510460 10−8I], [9.530131615+ 8.855537408 10−14I,

4.522881549− 7.890932410 10−14I, 6.904017550+ 1.237092006 10−14I],

[9.530131616− 2.761169677 10−23I, 4.522881547+ 3.876817403 10−23I,

6.904017545+ 2.647815558 10−23I]

With this complex starting value we have gotten back to the previous real
solution in root2 since all of the imaginary parts of the solution above are all
very close to zero. You should try more complex starting guesses and see if
they all give these two real solutions or not. Do you believe that this system
of equations has only two real solutions and no complex ones?

