Principles of Linear Algebra With Maple ${ }^{\text {TM }}$ Errata

Kenneth Shiskowski and Karl Frinkle

(C) Last revised February 22, 2011

- Page 55, the variable at the end of the last equation should be z, not w.

$$
X=\left[\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right]=\left[\begin{array}{c}
\frac{67}{7} \\
-\frac{59}{7} \\
0 \\
-13
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{7} \\
-\frac{6}{7} \\
1 \\
0
\end{array}\right] z
$$

Thanks to Marty Person for finding this one.

- Page 188, the fourth output on this page, corresponding to the variable znum, has a minus sign in the wrong place. The matrix is really

$$
\text { znum }:=\left[\begin{array}{ccc}
5 & 13 & -8 \\
4 & -7 & 2 \\
-1 & 11 & 0
\end{array}\right]
$$

This is purely a typographical error, and if you enter the command correctly as given, you will get the correct answer. Thanks to Marty Person for finding this one.

- Page 329, the matrix A in Homework Problem 6 is incorrect. The problem should read as:

6. Use problem 5 to show that any real matrix A of the form

$$
A=\frac{1}{\sqrt{a^{2}+b^{2}}}\left[\begin{array}{cc}
a & b \\
-b & a
\end{array}\right]
$$

is orthogonal if $a^{2}+b^{2} \neq 0$.

- Page 329, Homework Problem 7 needs to be reworded:

7. Show that every 2×2 rotational matrix, given by

$$
\left[\begin{array}{cc}
\cos (\theta) & \sin (\theta) \\
-\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

for some angle θ, is an orthogonal matrix.

- Page 343, In Homework Problem 11 part (a), the second linear map should be S, not T.

11. (a) Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $S: \mathbb{R}^{m} \rightarrow \mathbb{R}^{k}$ be two linear maps. Show that their composite, $S \circ T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$, is also a linear map. Recall that the composite function $S \circ T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ has the rule $(S \circ T)(\vec{v})=S(T(\vec{v}))$, for all

- Page 418, the matrix $A_{\vec{v}}$ is not correct. The following is the correct version:
$A_{\vec{v}}=$
$\left[\begin{array}{ccc}\alpha^{2}+\left(1-\alpha^{2}\right) \cos (\theta) & \alpha \beta-\alpha \beta \cos (\theta)+\delta \sin (\theta) & \alpha \delta-\alpha \delta \cos (\theta)-\beta \sin (\theta) \\ \alpha \beta-\alpha \beta \cos (\theta)-\delta \sin (\theta) & \beta^{2}+\left(1-\beta^{2}\right) \cos (\theta) & \beta \delta-\beta \delta \cos (\theta)+\alpha \sin (\theta) \\ \alpha \delta-\alpha \delta \cos (\theta)+\beta \sin (\theta) & \beta \delta-\beta \delta \cos (\theta)-\alpha \sin (\theta) & \delta^{2}+\left(1-\delta^{2}\right) \cos (\theta)\end{array}\right]$

This implies a few changes to formulas found elsewhere in this section, and the next. For instance, the equations defining $\overrightarrow{e_{1}}(\theta \vec{v}), \overrightarrow{e_{2}}(\theta \vec{v})$, and $\overrightarrow{e_{3}}(\theta \vec{v})$ on page 418 look as follows:

For $k=1,2,3$, we can break the above expression into components:
$\overrightarrow{e_{1}}\left(\theta_{\vec{v}}\right)=\left\langle\alpha^{2}+\left(1-\alpha^{2}\right) \cos (\theta), \alpha \beta-\alpha \beta \cos (\theta)+\delta \sin (\theta), \alpha \delta-\alpha \delta \cos (\theta)-\beta \sin (\theta)\right\rangle$
$\overrightarrow{e_{2}}\left(\theta_{\vec{v}}\right)=\left\langle\alpha \beta-\alpha \beta \cos (\theta)-\delta \sin (\theta), \beta^{2}+\left(1-\beta^{2}\right) \cos (\theta), \beta \delta-\beta \delta \cos (\theta)+\alpha \sin (\theta)\right\rangle$
$\overrightarrow{e_{3}}\left(\theta_{\vec{v}}\right)=\left\langle\alpha \delta-\alpha \delta \cos (\theta)+\beta \sin (\theta), \beta \delta-\beta \delta \cos (\theta)-\alpha \sin (\theta), \delta^{2}+\left(1-\delta^{2}\right) \cos (\theta)\right\rangle$
Please see the revised section 10.4 and 10.5 .pdf in which we revise and clarify the Maple code and the text. A link to the modified sections can be found on the same page at which this document was located.

