
Principles of Linear Algebra With Maple
TM

Sections 10.4 and 10.5 Revised

Kenneth Shiskowski and Karl Frinkle

c© Revision date November 2, 2010

Chapter 10

The Geometry of Linear

and Affine Maps

10.4 Rotations, Reflections, and Rescalings in

Three Dimensions

In this section, we look at those linear maps T : R3 → R3 that are rotations
about lines through the origin, reflections about a coordinate axis or the origin,
and general rescalings. Let us begin by discussing rotations in R

3, in particular
we already know how to rotate objects by an angle θ in the xy-plane. In
three dimensions, a rotation in the xy-plane means a rotation about the z-axis.
Therefore, we need to construct a 3×3 matrix that keeps all z values the same,
and rotates the (x, y) coordinates by an angle of θ. Your first guess should be
to put the 2 × 2 matrix in the upper righthand corner of our hopeful matrix.
The question remains, What do we do about the last row and column? Well,
we wish for z to stay fixed, therefore we should use the third row and column
of the identity matrix. So our matrix looks as follows:

Aθz =





cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1



 (10.26)

which we can verify works if we perform the multiplication Aθz
−→v , where −→v ∈

R
3:





cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0
0 0 1









x

y

z



 =





x cos(θ)− y sin(θ)
x sin(θ) + y cos(θ)

z





1

2 Chapter 10. The Geometry of Linear and Affine Maps

The matrix Aθz can be easily modified to get the two other axis rotation ma-
trices:

Aθx =





1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)



 , Aθy =





cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)



 (10.27)

Now we want to find the matrix A−→v that allows us to rotate about any line
through the origin in three-space that is parallel to the unit vector −→v , where no
component of −→v is zero. If any component of −→v is zero, then we would simply
be rotating about one of the axes. If you analyze what we did in Section ??,
then you find that the rotation matrix A−→v has columns gotten by revolving
respectively each column of I3 from the 3× 3 identity matrix.

> with(linalg): with(plots): with(plottools):

> assume(alpha, real); assume(beta, real); assume(delta, real);

> interface(showassumed = 0):

> v:= [alpha,beta,delta]:

> Q1:= [1,0,0]:

> C1:= evalm(dotprod(v,Q)*v);

C :=
[

α2 αβ αδ
]

> R1:= sqrt(1-alphaˆ2);

R1 :=
√

1− α2

> U1:= evalm((Q1-C1)/R1);

U1 :=
[√

1− α2 − αβ√
1−α2

− αδ√
1−α2

]

> V1:= simplify(crossprod(U1,v), {alphaˆ2+betaˆ2+deltaˆ2=1});

V 1 :=
[

0 − δ√
1−α2

β√
1−α2

]

>Nv1:= expand(simplify(evalm(C1+R1*cos(theta)*U1+R1*sin(theta)*V1)));

Nv1 := [α2 + cos(θ)− cos(θ)α2 αβ − cos(θ)αβ − sin(θ)δ αδ − cos(θ)αδ + sin(θ)β]

This is the first column of the rotation matrix A−→v . Now let us find its
second and third columns.

> Q2:= [0,1,0]:

10.4 Rotations, Reflections, and Rescalings in Three Dimensions 3

> C2:= evalm(dotprod(v,Q2)*v);

C2 :=
[

αβ β2 βδ
]

> R2:= sqrt(1-betaˆ2);

R2 :=
√

1− β2

> U2:= evalm((Q2-C2)/R2);

U2 :=
[

− αβ√
1−β2

√

1− β2 − βδ√
1−β2

]

> V2:= simplify(crossprod(U2,v),{alphaˆ2+betaˆ2+deltaˆ2=1});

V 2 :=
[

δ√
1−β2

0 − α√
1−β2

]

>Nv2:= expand(simplify(evalm(C2+R2*cos(theta)*U2+R2*sin(theta)*V2)));

Nv2 := [αβ − cos(θ)αβ + sin(θ)δ β2 + cos(θ)− cos(θ)β2 βδ − cos(θ)βδ − sin(θ)α]

> Q3:= [0,0,1]:

> C3:= evalm(dotprod(v,Q3)*v);

C3 :=
[

αδ βδ δ2
]

> R3:= sqrt(1-deltaˆ2);

R :=
√

1− δ2

> U3:= evalm((Q3-C3)/R3);

U3 :=
[

− αδ√
1−δ2

− βδ√
1−δ2

√
1− δ2

]

> V3:= simplify(crossprod(U3,v),{alphaˆ2+betaˆ2=1-deltaˆ2});

V 3 :=
[

− β√
1−δ2

α√
1−δ2

0
]

>Nv3:= expand(simplify(evalm(C3+R3*cos(theta)*U3+R3*sin(theta)*V3)));

Nv3 := [αδ − cos(θ)αδ − sin(θ)β βδ − cos(θ)βδ + sin(θ)α δ2 + cos(θ)− cos(θ)δ2]

Next, we have all three columns of A−→v . Notice that no component of the
unit vector −→v = 〈α, β, δ〉 parallel to our axis of rotation can be zero since we
must divide by their absolute values in A−→v .

4 Chapter 10. The Geometry of Linear and Affine Maps

> rotmatrix:= transpose(matrix([Nv, Nv2, Nv3]));

rotmatrix :=




α2 + cos(θ)− cos(θ)α2 αβ − cos(θ)αβ − sin(θ)δ αδ − cos(θ)αδ + sin(θ)β
αβ − cos(θ)αβ + sin(θ)δ β2 + cos(θ)− cos(θ)β2 βδ − cos(θ)βδ − sin(θ)α
αδ − cos(θ)αδ − sin(θ)β βδ − cos(θ)βδ + sin(θ)α δ2 + cos(θ)− cos(θ)δ2





> A:= (alpha,beta,delta,theta) -> matrix([[alphaˆ2 + cos(theta) - cos(theta)
*alphaˆ2, alpha*beta - cos(theta)*alpha*beta + sin(theta)*delta, alpha*delta
- cos(theta)*alpha*delta - sin(theta)*beta], [alpha*beta - cos(theta)*alpha
*beta - sin(theta)*delta,betaˆ2 + cos(theta) - cos(theta)*betaˆ2, beta*delta -
cos(theta)*beta*delta + sin(theta)*alpha], [alpha*delta - cos(theta)*alpha
*delta+ sin(theta)*beta, beta*delta - cos(theta)*beta*delta - sin(theta)*alpha,
deltaˆ2 + cos(theta) - cos(theta)*deltaˆ2]]):

> evalf(A(2/sqrt(38),-5/sqrt(38),3/sqrt(38),9*Pi/7));





−0.4525961384 −0.8077236010 0.8904895659
−0.8077236010 0.4445955941 −0.3871916093
−0.3778085756 −0.3871916092 −0.2389790592





The matrix above is an example with −→v =
1√
38

〈2,−5, 3〉 and θ =
9

7
π. The

above calculations may seem lengthy, tedious, and complicated, however, if we
spend a few minutes working through the details, perhaps we can demystify
this whole process. Remember that I3 is the 3×3 matrix whose columns are the
standard basis vectors {−→e1 ,−→e2 ,−→e3} of R3. We will rotate −→ek about −→v = 〈α, β, δ〉
by an angle of θ, where k = 1, 2, 3 and α2 + β2 + δ2 = 1. Once again following
the pattern of Section 7.1, we must find the point C (or in vector form −→c) on
−→v closest to the tip of vector −→ek. In vector form, this is simply proj−→v (

−→ek):

−→c =
−→v · −→ek
|−→v |

−→v (10.28)

Under the assumption that |−→v | = 1, we find that −→c = (−→v · −→ek)−→v . Now
that we have the center of rotation, we need to construct our two coordinate
axes to rotate about. These coordinate axes will be the plane perpendicular
to −→v centered at the point C. To find the first axis, notice that −→ek − −→c is
perpendicular to −→c , with R = |−→ek −−→c | being the distance from the tip of
vector −→ek to the point C. So we define

−→u =
1

R
(−→ek −−→c) (10.29)

to be the unit vector orthogonal to −→c that starts at the point C and points
in the direction of −→ek . A unit vector orthogonal to both −→c and −→u is easy to

10.4 Rotations, Reflections, and Rescalings in Three Dimensions 5

compute by using the cross product:

−→w =
−→u ×−→c
|−→u ×−→c |

= −→u ×−→v
(10.30)

The above two definitions of −→w are equivalent since −→c and −→v are in the same
direction and both cross products result in a unit length vector. To see this,
first we note that the first is obviously unit length; secondly, since −→u and −→v
are unit length and perpendicular, we are guaranteed that −→u × −→v will be of
unit length by the formula since

|−→u ×−→v | = |−→u | |−→v | sin
(π

2

)

From a computational point of view, it is easier to compute −→u × −→v , however
for matters of simplification, which we need soon, we choose the first definition.
Regardless of which formula you use for −→w , the set {−→u ,−→w } forms an orthonor-
mal basis for the plane perpendicular to −→v . So to rotate −→ek by an angle of
θ about −→v , which we will denote as −→ek(θ−→v), we simply perform the following
vector operation:

−→ek(θ−→v) = −→c +R cos(θ)−→u +R sin(θ)−→w (10.31)

As it stands, this formula may look simple, however, −→u and −→w both are more
complicated expressions. Let us investigate this further. By looking at the
definition of −→u , we see that

R cos(θ)−→u = R cos(θ)
−→ek −−→c

R

= cos(θ)(−→ek −−→c)
(10.32)

The final term requires a little more work, but it does simplify after some
algebraic maneuvers:

R sin(θ)−→w = R sin(θ)

−→c ×
−→ek −−→c

R
∣

∣

∣

∣

−→c ×
−→ek −−→c

R

∣

∣

∣

∣

= R sin(θ)

1

R
(−→c × (−→ek −−→c))

1

R
|−→c × (−→ek −−→c)|

= R sin(θ)
(−→c × (−→ek −−→c))
|−→c × (−→ek −−→c)|

(10.33)

6 Chapter 10. The Geometry of Linear and Affine Maps

Now, we also have that

|−→c × (−→ek −−→c)| = |−→c | |−→ek −−→c | sin(α)

= |−→c |R sin
(π

2

)

= |−→c |R

(10.34)

and

−→c × (−→ek −−→c) = −→c ×−→ek −−→c ×−→c
= −→c ×−→ek

(10.35)

Putting equations (10.34) and (10.35) into (10.33) gives

R sin(θ)−→w =
−→c ×−→ek
|−→c | sin(θ) (10.36)

After all this simplification, we can rewrite (10.31) as

−→ek(θ−→v) = −→c + (−→ek −−→c) cos(θ) +
−→c ×−→ek
|−→c | sin(θ) (10.37)

For k = 1, 2, 3, we can break the above expression into components:

−→e1(θ−→v) = 〈α2 +
(

1− α
2
)

cos(θ), αβ − αβ cos(θ) + δ sin(θ), αδ − αδ cos(θ)− β sin(θ)〉

−→e2(θ−→v) = 〈αβ − αβ cos(θ)− δ sin(θ), β2 +
(

1− β
2
)

cos(θ), βδ − βδ cos(θ) + α sin(θ)〉

−→e3(θ−→v) = 〈αδ − αδ cos(θ) + β sin(θ), βδ − βδ cos(θ)− α sin(θ), δ2 +
(

1− δ
2
)

cos(θ)〉

So given a vector−→z = 〈z1, z2, z3〉, we can express this as−→z = z1
−→e1+z2

−→e2+z3
−→e3 .

If we wish to rotate −→z about a vector −→v by angle θ, the unknown matrix A−→v
applied to −→z satisfies:

A−→v
−→z = z1A−→v

−→e1 + z2A−→v
−→e2 + z3A−→v

−→e3
= z1

−→e1(θ−→v) + z2
−→e2(θ−→v) + z3

−→e3(θ−→v)

=
[−→e1(θ−→v)

∣

∣

−→e2(θ−→v)
∣

∣

−→e3(θ−→v)
]





z1
z2
z3





Therefore, now we have that the matrix A−→v ’s columns are −→e1 , −→e2 , and −→e3 :

A−→v = (10.38)







α2 +
(

1− α2
)

cos(θ) αβ − αβ cos(θ) + δ sin(θ) αδ − αδ cos(θ)− β sin(θ)

αβ − αβ cos(θ)− δ sin(θ) β2 +
(

1− β2
)

cos(θ) βδ − βδ cos(θ) + α sin(θ)

αδ − αδ cos(θ) + β sin(θ) βδ − βδ cos(θ)− α sin(θ) δ2 +
(

1− δ2
)

cos(θ)







10.4 Rotations, Reflections, and Rescalings in Three Dimensions 7

Comparing the matrix A−→v above to the matrix labeled rotmatrix in the
previous set of Maple code reveals that we have arrived at the same rotation
matrix as that found by Maple.

Example 10.4.1. After all of these calculations, it is time to do an example.
Let −→w = 〈−5, 3, 11〉 be a vector parallel to our axis of rotation that is a line
through the origin. We want to rotate the point P (4,−7, 6) about this line
through angles θ, which are multiples of 10◦ until we are back at the point P .
The plot of these points is essentially the circle of rotation for P , as seen in
Figures 10.10 and 10.11.

> P:= [4,-7,6]: w:= [-5,3,11]:

> length w:= norm(w,frobenius);

length w :=
√
155

> v:= evalm(w/length w):

> points:= [seq(evalm(evalf(A(op(convert(v,list)),2*Pi*j/36))&*P),j=0..36)]:

> points[1];
[

4. −7. 6.
]

> plotpts:= seq(sphere(convert(points[j],list),.3),j=1..37):

> text P:= textplot3d([op(P),“P”], align={ABOVE, RIGHT}, color=black):

> rotaxis:= line(convert(evalm(-10*v),list), convert(evalm(10*v),list), thick-
ness = 2, color = red):

> Center:= convert(evalm(dotprod(v,P)*v),list);

Center :=

[

−25

31
,
15

31
,
55

31

]

> plot Center:= sphere(Center,.3,style = patchnogrid):

> text center:= textplot3d([op(Center),“C”], align={ABOVE,RIGHT}, color
= black):

> Arrows:= [seq(PLOT3D(arrow(Center, convert(points[j],list), .15, .45, .25,
cylindrical arrow, color = blue)), j = 1..37)]:

8 Chapter 10. The Geometry of Linear and Affine Maps

> display({rotaxis, text P, text center, plot Center, display([plotpts], inse-
quence = true), display(Arrows, insequence = true) }, axes = boxed, scaling
= constrained);

C

P

–10
–5

0
5 x

–5
0

5
10

y

–5

0

5

z

Figure 10.10: First frame of a sphere located at P (4,−7, 6) being rotated about
a line in the direction −→w = 〈−5, 3, 11〉 in R

3.

An alternative plot of this rotation is below, but it takes much more time
and memory to compute since it plots simultaneously 37 spheres at each of the
points at 10◦ of separation in the rotation of the point P .

> display({rotaxis, text P, text center, plot Center, plotpts, display(Arrows,
insequence = true)}, axes = boxed, scaling = constrained);

C

P

–10
–5

0
5

x

–5

0

5

10

y

–5

0

5
z

Figure 10.11: All of the spheres in the rotation about the line in the direction
−→w = 〈−5, 3, 11〉 are depicted here.

10.4 Rotations, Reflections, and Rescalings in Three Dimensions 9

Now that we have determined all of the rotational matrices for R3, we will
next focus our attention on rescalings. Similar to the two-dimensional case, a
general three-dimensional rescaling is given by matrices of the form

A(a,b,c) =





a 0 0
0 b 0
0 0 c





for real entries a, b, and c. The above scaling matrix corresponds to the linear
map T (〈x, y, z〉) = 〈ax, by, cz〉. When a, b, and c are all positive, we simply
have a scaling in the same direction as 〈x, y, z〉. However, if at least one of the
components along the diagonal is negative, we have not just a scaling, but a
reflection as well. The matrix

Axy =





1 0 0
0 1 0
0 0 −1





is reflection about the xy-plane, since the x and y coordinates stay fixed, and
the z coordinate is replaced by −z. The matrix

A−→
0
=





−1 0 0
0 −1 0
0 0 −1





is reflection about the origin. The question of whether all linear maps T : R3 →
R

3 can be decomposed into a composite of rotations and general rescalings is
obviously a challenging one, and one should consider all of the work done in
Section 10.2 to decompose all real 2 × 2 matrices into a product of rotations,
reflections and rescaling matrices.

Homework Problems

1. Prove that the following relations hold, and give a geometric interpretation
of this result

A−1
θx

= A−θx , A−1
θy

= A−θy , A−1
θz

= A−θz

2. Verify that no two rotation matrices commute, (e.g. AθxAφy
6= Aφy

Aθx).
Remember to use different angle variables for each matrix.

3. As a general rule, scalings and rotations do not commute. However, prove
that scalings in just one direction commute with rotations corresponding to
the axis of scaling for each of the x, y, and z axes. As an example, show that

10 Chapter 10. The Geometry of Linear and Affine Maps

A(a,1,1)Aθx = AθxA(a,1,1). Can you give a geometric interpretation of this re-
sult?

4. For rotations in the plane, it was shown that the rotation matrix Aθ satis-
fied AθAφ = Aθ+φ. Verify that the same property holds for the three rotation
matrices Aθx , Aθy , and Aθz for rotations in R

3.

5. Determine the 3× 3 matrix that will rotate the point P about the line pass-
ing through the origin in the direction of −→v by an angle of θ, then compute
the coordinates of the rotated point.

(a) P (1, 1, 1), −→v = 〈3, 0, 0〉, θ = π
4 (b) P (1, 0,−1), −→v = 〈0, 2, 0〉, θ = π

2

(c) P (1, 0, 1), −→v = 〈0, 0, 1〉, θ = 3
4π (d) P (0, 1, 1), −→v = 〈1, 0, 0〉, θ = 3

2π

6. For each of the following, construct a single matrix that will satisfy each of
the following set of criteria, in the sequence specified.

(a) First rotate about the z-axis by θ = π
3 , then scale in the x-direction by

a factor of 2, and finally, scale in the y-direction by a factor of 3.

(b) First flip about the xy-plane, next rotate about z-axis by θ = π
4 , and

lastly, scale in z-direction by a factor of 2.

(c) First scale in y-direction by a factor of 2, then rotate about y-axis by
an angle of θ = −π

2 , then finally, scale in the x-direction by a factor of 1
2 .

7. Describe a procedure for rotating a point P (x, y, z) about the line passing
through the origin in the direction of −→v = 〈α, β, 0〉, where α and β are both
non-zero and satisfy α2 + β2 = 1.

8. Decompose an arbitrary 3×3 matrix into the product of rotations, rescalings
and reflections.

Maple Problems

1. Homework problem 1 illustrated the fact that the inverse rotation matrices
can be found by replacing the angle θ with −θ in the original rotation matrix.
We wish to determine if the the same holds true for the rotation matrix A−→v .

10.5 Affine Maps 11

(a) Replace θ with −θ in A−→v and perform the matrix multiplications

A−→v (θ)A−→v (−θ) and A−→v (−θ)A−→v (θ)

(b) Compute A−1
−→v using Maple’s inverse command, simplify and compare

the result to A−→v (−θ).

2. Determine the 3 × 3 matrix that will rotate the point P about the line
passing through the origin in the direction of −→v by an angle of θ.

(a) P (2, 0, 3), −→v = 〈2,−1, 2〉 (b) P (2, 3,−1), −→v = 〈−1, 0, 0〉

(c) P (1, 0, 1), −→v = 〈0, 0, 1〉 (d) P (1,−1, 0), −→v = 〈1, 2, 1〉

(e) P (0, 1, 1), −→v = 〈1, 0, 0〉 (f) P (1,−1, 3), −→v = 〈−1, 1, 2〉

3. Plot, and animate, an entire rotation of the point P about the line in the
direction −→v for each of parts (a)-(f) of problem 2.

4. Describe and test a procedure for doing rotations about any line in space,
not necessarily through the origin.

10.5 Affine Maps

Closely related to linear maps are affine maps. We begin with a definition:

Definition 10.5.1. An affine map S : Rn → R
m is a translation of a linear

map, that is, S (−→u) = T (−→u)+
−→
b for all u ∈ R

n where T : Rn → R
m is a linear

map and
−→
b ∈ R

m is fixed.

If A is the standard m × n matrix representing the linear map T , then A,

along with the fixed vector
−→
b in R

m, also represents the affine map S, since

we have S (−→u) = A−→u +
−→
b for all −→u ∈ R

n. Affine maps operate analogously

to linear maps, except that they also translate their results by
−→
b . Thus, affine

maps will take a subspace K ⊆ R
n and return S(K) = L +

−→
b in R

m, where
L = T (K) is the subspace of Rm corresponding to the image of the subspace K
of Rn under the map T . Hence, an affine map S translates the image subspace

of T by
−→
b . This should remind you of the work we did back in Section 8.1 on

subspace translates. The fixed vector
−→
b of Rm is S

(−→
0 n

)

, since

S
(−→
0 n

)

= T
(−→
0 n

)

+
−→
b =

−→
0 m +

−→
b =

−→
b

12 Chapter 10. The Geometry of Linear and Affine Maps

Note that we used the fact that linear maps take the zero vector of their domain
to the zero vector of their range. We can directly relate solving a linear system

of equations A−→x = −−→
b , for an m× n matrix A, to affine maps. This matrix

equation can be written as A−→x +
−→
b =

−→
0 m . The solutions to this matrix

equation are the solutions −→u in R
n to S (−→u) =

−→
0 m, which is to say, solutions

to T (−→u)+
−→
b =

−→
0 m, for the linear map T with standard matrix A representing

it. We already know that the solutions −→x in R
n to A−→x = −−→

b are of the form
−→x = −→xk+

−→c , where−→xk ∈ Ker(T) corresponds to the the solutions of A−→x =
−→
0 m,

and −→c is a fixed vector in R
n, with A−→c = −−→

b .

Example 10.5.1. We next do an example of an affine map. Consider S :

R
3 → R

4 given by S (−→u) = A−→u +
−→
b , where

A =









−3 1 7
1 9 3
−1 19 13
4 8 −4









,
−→
b =









−8
5
2
13









In the following Maple commands, we plot (Figure 10.12) the solutions to

S (−→u) =
−→
0 4. In other words, we are searching for solutions to A−→u = −−→

b .

> with(linalg): with(plots): with(plottools):

> A:= matrix([[-3, 1, 7], [1, 9, 3], [-1, 19, 13], [4, 8, -4]]):

> B:= matrix([[8], [-5], [-2], [-13]]):

> rref(augment(A,B));














1 0 − 15
7 − 11

4

0 1 4
7 − 1

4

0 0 0 0

0 0 0 0















From the solution given above, we can reconstruct the solution as a line given
parametrically as

L =

{

〈x, y, z〉
∣

∣

∣

∣

x =
15

7
t− 11

4
, y = −4

7
t− 1

4
, z = t

}

(10.39)

for t an arbitrary parameter. We can decompose L into a sum of two compo-
nents, the first being the line L0, which passes through the origin, the second
being a translation by a particular vector −→xp. To find the particular vector,
notice that all we have to do is set t = 0 in the parametric definition of L given

10.5 Affine Maps 13

above, which yields −→xp = 〈− 11
4 ,− 1

4 , 0〉. Now that we have −→xp, the line L0 is
simply the remaining portion of the solution given in equation 10.39:

L0 =

{

〈15

7
t,−4

7
t, t

〉

∣

∣

∣

∣

t ∈ R

}

(10.40)

Clearly L0 is a line though the origin, and is thus a subspace of R3. As previ-
ously discussed, the line L can be realized as a translate of the line L0 by the
particular solution −→xp. Now, let us plot the two lines L and L0 along with the
particular solution vector −→xp.

> plotL:= spacecurve([15/7*t-11/4, -4/7*t-1/4, t], t = -3..3, color=red, thick-
ness=2):

> plotL0:= spacecurve([15/7*t, -4/7*t, t], t = -3..3, color = blue, thickness
= 2):

> plotP:= arrow([0,0,0], [-11/4,-1/4,0], .1, .2, .5, cylindrical arrow, color =
black):

> plot origin:= textplot3d([0,0,0,“O”], align={LEFT, ABOVE}, color =
black):

> plot P:= textplot3d([-11/4,-1/4,0,“P”], align={LEFT, ABOVE}, color =
black):

> display({plotL, plotL0, plotP, plot origin, plot P}, axes = boxed);

O
P

–6–4–2024 x

–2

–1

0

1

2

y

–1

0

1

2

z

Figure 10.12: The line L can be decomposed into a line through the origin and
a particular vector solution.

Recall that a linear map T : R2 → R
2 is uniquely determined by taking a

line segment in the domain to another line segment in the range. This is no
longer the case for an affine map S : R2 → R

2. As it turns out, an affine map
S : R2 → R

2 is uniquely determined by taking a triangle in the domain to

14 Chapter 10. The Geometry of Linear and Affine Maps

another triangle in the range. To see how this is the case, let the triangle in
the domain be defined as the interior of the three points that are the terminal
points of the following three vectors:

T1 = {〈x1, y1〉, 〈x2, y2〉, 〈x3, y3〉}

similarly for the triangle in the range:

T2 = {〈z1, w1〉, 〈z2, w2〉, 〈z3, w3〉}

Then,
S (〈xj , yj〉) = 〈zj , wj〉, 1 ≤ j ≤ 3

If S (−→u) = A−→u +
−→
b , for the 2× 2 matrix A =

[

a b

c d

]

and
−→
b =

[

α

β

]

, then

we have the systems of equations
[

a b

c d

] [

xj

yj

]

+

[

α

β

]

=

[

zj
wj

]

, 1 ≤ j ≤ 3

This gives the new single matrix equation
















x1 y1 0 0 1 0
0 0 x1 y1 0 1
x2 y2 0 0 1 0
0 0 x2 y2 0 1
x3 y3 0 0 1 0
0 0 x3 y3 0 1

































a

b

c

d

α

β

















=

















z1
w1

z2
w2

z3
w3

















(10.41)

This last matrix equation can be solved for our six unknowns {a, b, c, d, α, β},
which determine the affine map uniquely.

Example 10.5.2. As an example, we will now find the affine map S that sends
the triangle T1 to triangle T2 defined by the following sets of points:

T1 = {〈−9,−5〉, 〈4, 17〉, 〈1,−6〉}
T2 = {〈3, 11〉, 〈−8, 3〉, 〈−2,−15〉}

> X:= [-9,4,1]: Y:= [-5,17,-6]: Z:= [3,-8,-2]: W:= [11,3,-15]:

> R:= matrix([[Z[1]], [W[1]], [Z[2]], [W[2]], [Z[3]], [W[3]]]);

R :=

















3
11
−8
3
−2
−15

















10.5 Affine Maps 15

> d:= matrix([[X[1], Y[1], 0, 0, 1, 0], [0, 0, X[1], Y[1], 0, 1], [X[2], Y[2], 0, 0, 1,
0], [0, 0, X[2], Y[2], 0, 1], [X[3], Y[3], 0, 0, 1, 0], [0, 0, X[3], Y[3], 0, 1]]);

















−9 −5 0 0 1 0
0 0 −9 −5 0 1
4 17 0 0 1 0
0 0 4 17 0 1
1 −6 0 0 1 0
0 0 1 −6 0 1

















> AB:= evalm(inverse(d)&*R);

AB :=



























− 121
233

− 45
233

− 580
233

258
233

− 615
233

− 1367
233



























> A:= matrix([[AB[1,1],AB[2,1]], [AB[3,1],AB[4,1]]]);

A :=

[

− 121
233 − 45

233

− 580
233

258
233

]

> B:= matrix([[AB[5,1]],[AB[6,1]]]);

B :=

[

− 615
233

− 1367
233

]

> evalm(A&*[X[1],Y[1]]+B);
[

3
11

]

> evalm(A&*[X[2],Y[2]]+B);
[

−8
3

]

> evalm(A&*[X[3],Y[3]]+B);
[

−2
−15

]

The last three Maple commands are simply verifications that the vectors
〈xk, yk〉, determining the corners of triangle T1, were sent to their corresponding

16 Chapter 10. The Geometry of Linear and Affine Maps

counterparts 〈zk, wk〉, of T2. Hence, our formula works. Now you should see
what it takes to determine an affine map S : R3 → R

3 uniquely, and in general
when the dimensions are not the same for both domain and range.

We have previously looked at rotations about the origin in R
2 and rotations

about a line through the origin in R
3. The next logical question to ask, is what

happens if we rotate about a point (a, b) in R
2 which is not the origin, or

rotate about a line that does not pass through the origin in R
3? You should

have guessed that we get an affine map for both rotations. In Section 8.1, we
already expressed this concept in terms of matrix multiplication, so it is fairly
straightforward to rewrite the ideas in terms of maps instead.

We will once again define Aθ to be the 2 × 2 rotation matrix for the fixed
angle θ about the origin in R

2, defined in the standard way. If we now wish
to rotate a point corresponding to the terminal end of a vector −→u about the
point (a, b), we need to use the affine map S. Here, S is defined as follows:

S (−→u) = Aθ (
−→u − 〈a, b〉) + 〈a, b〉

= Aθ
−→u + 〈a, b〉 −Aθ〈a, b〉

= Aθ
−→u +

−→
b

(10.42)

where

−→
b = 〈a, b〉 −Aθ〈a, b〉
= (I2 −Aθ) 〈a, b〉

(10.43)

Notice this is similar to the matrix multiplication version from Section ??,
where we translated our frame of rotation from the point (a, b) to the origin,
and then translated back by adding the point (a, b) to the resulting rotated
point. The same can be done for a rotation about a line L not through the
origin in R

3. If Aθ is the 3× 3 rotation matrix for the fixed angle θ about the
line L′ parallel to L but through the origin, then the affine map S will rotate
about L any point whose represented by the terminal end of a vector −→u ∈ R

3,
and is defined as

S (−→u) = Aθ (
−→u − 〈a, b, c〉) + 〈a, b, c〉

= Aθ
−→u + 〈a, b, c〉 −Aθ〈a, b, c〉 = Aθ

−→u +
−→
b

(10.44)

for

−→
b = 〈a, b, c〉 −Aθ〈a, b, c〉
= (I3 −Aθ) 〈a, b, c〉

(10.45)

Here the point (a, b, c) is a fixed point on the line L.

10.5 Affine Maps 17

Example 10.5.3. Now, let us do an example of this three-dimensional rotation
about a line L that does not pass through the origin. First, we consider the

line going through the point
−→
P 〈11, 25,−7〉, which is parallel to the vector

−→w = 〈5, 2, 9〉. We want to rotate the point
−→
Q〈4,−7, 13〉 about this line through

angles θ that are multiples of 10◦, until we are back at the point
−→
Q . Each

rotation through a fixed angle θ is one application of an affine map. The plot
of these points, which can be seen in Figures 10.13 and 10.14, is essentially

the circle of rotation for
−→
Q . Referring back to Section 4.4, the formula for the

rotated point
−→
Qnew will be given by

−→
Qnew =A−→v (

−→
Q −−→

P) +
−→
P

= (I3 −A−→v)
−→
P +A−→v

−→
Q

(10.46)

In the Maple commands below, the lengthy formula defining A below is simply

the expression for A−→v given in equation (10.38), and the matrix
−→
B corresponds

to the column matrix (I3 −A−→v)
−→
P , giving the formula for

−→
Qnew to now be

−→
Qnew = A−→v

−→
Q +

−→
B

> A:= (alpha,beta,delta,theta) -> matrix([[alphaˆ2 + cos(theta) - cos(theta)
*alphaˆ2, alpha*beta - cos(theta)*alpha*beta + sin(theta)*delta, alpha*delta
- cos(theta)*alpha*delta - sin(theta)*beta], [alpha*beta - cos(theta)*alpha
*beta - sin(theta)*delta,betaˆ2 + cos(theta) - cos(theta)*betaˆ2, beta*delta -
cos(theta)*beta*delta + sin(theta)*alpha], [alpha*delta - cos(theta)*alpha
*delta+ sin(theta)*beta, beta*delta - cos(theta)*beta*delta - sin(theta)*alpha,
deltaˆ2 + cos(theta) - cos(theta)*deltaˆ2]]):

> Q:= [4,-7,13]: P:= [11, 25, -7]: w:= [5, 2,9]:

> length w:= norm(w,frobenius);

length w :=
√
110

> v:= evalm(w/length w);

v :=

[√
110

22
,

√
110

55
,
9
√
110

110

]

> B:= theta -> evalm((diag(1,1,1)-evalf(A(op(convert(v,list)), theta)))&*P):

> points:= [seq(evalm(evalf(A(op(convert(v,list)), 2*Pi*j / 36)) &*Q + B(
2*Pi*j / 36)), j = 0..36)]:

> points[1];
[

4. −7. 13.
]

18 Chapter 10. The Geometry of Linear and Affine Maps

> plotpts:= seq(sphere(convert(points[j], list), 1), j=1..37):

> text Q:= textplot3d([op(Q),“Q”], align={ABOVE,RIGHT}, color=black):

> rotaxis:= line(convert(evalm(-30*v + P), list), convert(evalm(30*v + P),
list), thickness = 2, color = red):

> Center:= convert(evalm(dotprod(v,Q)*v+P),list);

Center :=

[

365

22
,
1498

55
,
337

110

]

> plot Center:= sphere(Center,1):

> text center:= textplot3d([op(Center),“C”], align={ABOVE, RIGHT}, color
= black):

> plot P:= sphere(P,1):

> text P:= textplot3d([op(P),“P”],align={BELOW, RIGHT},color=black):

> plot origin:= sphere([0,0,0],1):

> text origin:= textplot3d([op([0,0,0]),“O”], align={ABOVE, RIGHT}, color
= black):

> Arrows:= [seq(PLOT3D(arrow(Center, convert(points[j], list), 1,5,.3, cylin-
drical arrow, color = blue)), j=1..37)]:

> display({rotaxis, text Q, plot P, text P, text center, plot Center, plot origin,
text origin, display([plotpts], insequence = true), display(Arrows, insequence
= true)}, axes = boxed, scaling = constrained, view=[-40..60,-20..65,-30..30]);

P

C
Q

–50

0

50

x

0
50 y

–20

0

20

z

Figure 10.13: The point
−→
Q (at the tip of the arrow) is rotated about the line

passing through the point
−→
P (the point on the line not at the tail of the vector)

in the direction of the vector −→w . The origin is also shown for reference and is

located directly below the point
−→
Q in this figure.

> display({rotaxis, text Q, plot P, text P, text center, plot Center, plot origin,
text origin, display([plotpts], insequence = false), display(Arrows[1])}, axes =

10.5 Affine Maps 19

frame, scaling = constrained, view = [-40..60, -20..65, -30..30], labels = [x, y,
z], orientation = [126, 64], style = patchnogrid);

P

C

Q

–40

0
20

40
60

x
–20

0
20

40 y

–20

0

20

z

Figure 10.14: All of the rotated points, along with corresponding perpendicular
arrows to the line of axis of rotation.

We end this section with a procedure called RotationsInSpace which takes
a non-zero vector −→v = 〈α, β, δ〉 parallel to the line L of rotation where the line

of rotation goes through the point
−→
P (which could be the origin) but L is not

parallel to any axis or coordinate plane (no component of −→v can be 0), and

then rotates a point
−→
Q through the angle θ about L. The vector −→v and two

points
−→
P and

−→
Q can be given as lists, although −→v as a vector also works.

> with(linalg):
> RotationsInSpace:= proc(v,P,Q,theta)

local alpha, beta, delta, A, B, w:
w:= evalm(v/norm(v, frobenius)):
alpha:= evalf(w[1]);
beta:= evalf(w[2]);
delta:= evalf(w[3]);
A:= (alpha,beta,delta,theta) -> matrix([[alphaˆ2 + cos(theta) - cos(theta)
*alphaˆ2, alpha*beta - cos(theta)*alpha*beta + sin(theta)*delta, alpha
*delta - cos(theta)*alpha*delta - sin(theta)*beta], [alpha*beta - cos(theta)
*alpha*beta - sin(theta)*delta,betaˆ2 + cos(theta) - cos(theta)*betaˆ2,
beta*delta -cos(theta)*beta*delta + sin(theta)*alpha], [alpha*delta
-cos(theta)*alpha*delta+ sin(theta)*beta, beta*delta - cos(theta)*beta
*delta -sin(theta)*alpha, deltaˆ2 + cos(theta) - cos(theta)*deltaˆ2]]):
B:= evalm(P - A&*P):
evalm(A&*Q + B):

end proc:

20 Chapter 10. The Geometry of Linear and Affine Maps

> Q1 := RotationsInSpace([5, 2, 9], [11, 25, -7], [4, -7, 13], Pi/3);

Q1 :=
[

9.340909088+ 15.63678646
√
3, 9.736363627− 7.770720100

√
3,

− 6.960276898
√
3 + 6.313636364

]

> v:= [5, 2, 9]:

> w:= evalm(v/norm(v, frobenius));

w :=
[

1
22

√
110 1

55

√
110 9

110

√
110

]

> P := [11, 25, -7]: Q := [4, -7, 13]:

> C := evalm(dotprod(w, Q)*w+P);

C :=

[

365

22

1498

55

337

110

]

> evalf(norm(Q-C, frobenius)); evalf(norm(Q1-C, frobenius));

37.80728645
37.80728645

Homework Problems

1. Find the solutions to the equations S(−→u) =
−→
0 , for each of the following

affine maps:

(a)

[

1 −2
3 −4

]

−→u +

[

−1
1

]

(b)





4 3
−1 2
−2 5





−→u +





−1
2
1





(c)





0 2
5 0
−5 2





−→u +





7
−9
16



 (d)





1 −2 2
0 3 2
−2 −4 −1





−→u +





−1
1
4





(e)









1 −2 2
0 3 2
−2 −4 −1
4 5 6









−→u +









−1
2
−1
3









(f)

[

3 5 1
−2 1 −2

]

−→u +

[

−1
1

]

2. State the dimension for each of the solutions to the affine maps from prob-
lem 1.

10.5 Affine Maps 21

3. How many points in R
n does it take to define an affine transformation

S : Rn → R
n uniquely?

4. Referring to the matrix equation (10.41), construct the matrix used to
determine the number of vectors needed to create a unique affine map from R

2

to R
3 of the form:

S(−→u) =





a b

c d

e f





−→u +





α

β

γ





5. Determine the number of vectors needed in R
n and R

m, with n,m ≥ 1,
which will determine an affine map S : Rn → R

m uniquely. It may help to
construct a generic matrix, as in problem 4 and equation (10.41).

6. Express, as an affine map, the rotation of an arbitrary vector −→u ∈ R
2

through an angle θ about the point (1,−1).

7. Can a single affine transformation S : R2 → R
2 send the interior and sides

of the unit square to the interior and sides of an arbitrary quadrilateral in R
2?

If yes, explain why. If no, can it be done for any special type of quadrilateral?

Maple Problems

1. Construct an affine map S that takes the first set of points S to the second
set of points T, with S(−→sk) =

−→
tk .

(a) S =
{−→s1 = 〈1,−1, 1〉, −→s2 = 〈0, 2,−3〉, −→s3 = 〈2, 4,−3〉, −→s4 = 〈10,−3, 2〉

}

T =
{−→
t1 = 〈1, 2〉, −→t2 = 〈4, 2〉, −→t3 = 〈4, 5〉, −→t4 = 〈9,−7〉

}

(b) S =
{−→s1 = 〈1, 2〉, −→s2 = 〈−2, 3〉, −→s3 = 〈5,−1〉

}

T =
{−→
t1 = 〈1, 2,−1〉, −→t2 = 〈7, 8,−2〉, −→t3 = 〈3,−5, 6〉

}

(c) S =
{−→s1 = 〈1, 1, 3〉, −→s2 = 〈−2, 0, 5〉, −→s3 = 〈4, 3,−3〉, −→s4 = 〈7,−6, 8〉

}

T =
{−→
t1 = 〈1, 2,−2, 1〉,

−→
t2 = 〈3, 5, 6, 7〉,

−→
t3 = 〈−4,−6, 9, 0〉,

−→
t4 = 〈−3,−2, 5,−3〉

}

2. Construct a family of affine maps that takes the first set of points S to the
second set of points T.

(a) S =
{−→s1 = 〈1,−2〉, −→s2 = 〈9, 5〉

}

T =
{−→
t1 = 〈3,−8,−9, 1〉, −→t2 = 〈4, 5, 7,−6〉

}

22 Chapter 10. The Geometry of Linear and Affine Maps

(b) S =
{−→s1 = 〈−4, 5, 0, 3〉, −→s2 = 〈0, 3,−2, 1〉, −→s3 = 〈2, 5, 8,−1〉

}

T =
{−→
t1 = 〈1, 6, 3〉, −→t2 = 〈−4, 3, 7〉, −→t3 = 〈2, 3,−2〉

}

3. Rotate the point (−3, 4) about the point (1, 1). Perform a complete rotation,
including at least ten frames in your animation.

4. Rotate the point (−10,−9, 9) about the line that passes through the point
(1, 1, 1) and points in the direction 〈2,−2, 4〉. Perform a complete rotation,
including at least ten frames in your animation.

5. Rotate a sphere of radius 2, with center (3, 3, 0), about the line that passes
through the point (−1,−1, 1), and points in the direction perpendicular to the
line that passes through the center of the sphere and the point (−1,−1, 1).
Perform a complete rotation, including at least ten frames in your animation.

Research Projects

1. An interesting application of affine maps has been used by Michael Barnsley
to construct geometric objects called fractals. Research the topic of fractals in
Barnsley’s book Fractals Everywhere and write Maple code to generate his Fern
fractal example. You might also look at the book Elementary Linear Algebra

with Applications, 7th edition(or later) by Howard Anton and Chris Rorres for
some information on fractals.

