Principles of Linear Algebra With
Mathematica®
Rolling an Ellipse Along a Curve

Kenneth Shiskowski and Karl Frinkle
©) Draft date March 12, 2012

Contents

1 Rolling an Ellipse Along a Curve 1
1.1 TheSetup 1
1.2 The First Step« .. . 2
1.3 Automating the Process 8
1.4 Further Questions to Consider 13

Chapter 1

Rolling an Ellipse Along a
Curve

1.1 The Setup

In Section 7.2 of Principles of Linear Algebra With Mathematica®, we dis-
cussed the topic of “rolling” a circle along a curve. Of course, the rolling was
in quotes due to the fact that we were really just sliding the circle along the
curve. The animation have the appearance of a rolling circle, but this was due
only to the fact a circle is a perfectly symmetric object, and no matter which
way it is rotated, there is no apparent change in orientation. So what happens
if we pick an object which is not as symmetric? Take, for instance, an ellipse.
Clearly if an ellipse is rotated through most angles, it will be obvious to an
observer that the ellipse was indeed rotated. The only two angles for which
this is not the case is # = m and 8 = 27w. The question then becomes: what
additionally must be done to rotate an ellipse versus a circle?

To determine some of the math required to rotate an ellipse, we will start
with a simple setup, that of rolling the ellipse along a horizontal line, similar
to rolling a football, along a level surface, end over end. We define an ellipse
with center at (x.,y.) parametrically as

x(t) = x. + acos(t)
y(t) = yo + bsin(t) (L)

where a and b are the length of the major/minor axes corresponding, dependent
upon a > b or a < b. If we graph this ellipse, starting at ¢ = 0, then initially
we have the point (2. + a,y.). The bottom most point on the ellipse occurs
when ¢t = %71', yielding the point (., y. —b). So in order to roll an ellipse along

1

2 Chapter 1. Rolling an Ellipse Along a Curve

a horizontal line, our line must have the equation

Yy=%yc—b (12)

To perform actual calculations, we must choose values for the center (z.,y.)
and lengths of axes, a and b, however it should be apparent throughout the
following calculations that nothing depends on these values. We will choose
our center to be at (2,4), with @ = 4 and b = 2. Thus our horizontal line, given
in equation (1.2), is y = 4 —2 = 2. We will have Mathematica graph our initial
setup now.

Xc = 2; yc = 4;
a=4;b = 2;
EllipseF [t_] = {xc 4+ a Coslt], yc + b Sin[t]};

EllipsePlot = ParametricPlot[EllipseF[t], {t, 0, 27w}, PlotStyle—{
Thickness[0.007], Red}];

LinePlot = Graphics[{Thickness[0.005], Pink, Line[{{—10, 2}, {20,
2} 335
CenterPlot = Graphics[{PointSize[0.015], Black, Point[{{xc, yc}}]}];

Show|[EllipsePlot, CenterPlot, LinePlot, AxesOrigin—{0, 0}, Plot-
Range—{{—10, 20}, {0, 10}}]

10 -
oL
o

Il Il Il x
-10 10 20

Figure 1.1: The original ellipse and the horizontal line it will roll along.

As you can see from Figure 1.1, the ellipse rests on the horizontal line that
it will roll along. So we have now set up our problem.

1.2 The First Step

For the next step in the process, we simply wish to roll our ellipse a fixed
distance, r, to the right. If we wish to roll the ellipse r units in the z-direction,

1.2 The First Step 3

then we must count out r units on the ellipse, in a counter-clockwise direction,
starting at the point on the ellipse which is touching the line.

Recall that the formula for the arc length L of a parametric curve (z(t), y(t))
for t € (tg,t1) is given by

L= VEORt o) (1.3)

to

The total arclenth of the ellipse can be found by setting o = 0 and t; = 2,
which gives a full revolution.

NIntegrate[Norm[D[EllipseF[t], t]], {t, 0, 2 7}]
19.3769
3w
FindRoot [NIntegrate {Norm[D[EllipseF[t], t]], {t, - tlH == 2,
3w 3w
{tl, 1.1 ?, ?, 271'}:|
Nlntegrate::nlim: t = t1 is not a valid limit of integration. >
{t1 — 5.22924}

We plot the difference of 2 and the arclength formula, notice the root here
corresponds to the t value which give arclength 2.

3
Plot [2 — NlIntegrate [Norm[D [EllipseF[t], t]], {t,?ﬂ-,tl}} , {t1,0,27r}}

15

10

-5t
Figure 1.2: Difference of 2 and the arclength of the ellipse.

EllipseF[5.229238280827457]

{3.97657,2.26124}

3
TouchPlots = Graphics [{PointSize[0.025], Green, Point [{EllipseF {?ﬂ-] ,

EllipseF|[5.220238280827457] H H ;

4 Chapter 1. Rolling an Ellipse Along a Curve

NextTouch = Graphics[{PointSize[0.025], Black, Point[{{4, 2}}]}];

Show[EllipsePlot, TouchPlots, CenterPlot, LinePlot, NextTouch,
AxesOrigin—{0, 0}, PlotRange—{{—3, 8}, {0, 7}}]

y

\ \ \ \ Loy
-2 2 4 6 8

Figure 1.3: Original point on the ellipse which touches the line, and the new
point which will touch the line after rolling two units to the right.

Show[EllipsePlot, TouchPlots, CenterPlot, LinePlot, NextTouch,
AxesOrigin—{1, 1}, PlotRange—{{1, 5}, {1, 3}}]

Figure 1.4: Close-up of Figure 1.3 near the desired point of rotation.

Now we need to rotate the ellipse. But we are missing one important piece
of information, the angle of rotation. We need to construct the pair of vectors
which will yield the correct angle of rotation. As a first guess, you may try to
use the three points depicted in Figure 1.4 above, but perform the resulting
calculations show that this will not work. The next obvious idea is to still use
the horizontal line for one vector, but as second vector, use the tangent line
at the new point on the ellipse which will be touching the horizontal line after

1.2 The First Step 5

rotation. This also makes us determine where this tangent line intercepts the
horizontal line y = 2. We illustrate this in the Mathematica code and Figure
1.5 following.

M = D[EllipseF[t], t][[2]]/D[EllipseF][t], t][[1]]

Cot[t]
2

m=M /. t—5.229238280827457
0.284193

Solve[(y — EllipseF[5.229238280827457][[2]] == m (x —
EllipseF[5.229238280827457][[1]])) /. y—2]

{{z — 3.05734}}

AnglePoint = Graphics[{PointSize[0.025], Blue,
Point[{{3.0573416546670975, 2}}]};

ArrowPlots = Graphics[{Arrowheads[.10], Thickness[.010], Black,
Arrow[{{3.0573416546670975, 2}, {3.976573754490907,
2.2612392205181213}}], Black, Arrow[{{3.0573416546670975, 2}, {4,
2}

Show|[EllipsePlot, CenterPlot, LinePlot, NextTouch, ArrowPlots,
TouchPlots, AnglePoint, PlotRange—{{2.9, 4.2}, {1.8, 2.4}}, Axes-
Origin—{2.9, 1.8}]

y
241
22
2.1 e
‘ ‘ ‘ X
3. 35 4.

Figure 1.5: The vectors needed to compute the angle of rotation for the first
step in the rolling.

CenCirc = {3.0573416546670975, 2}

{3.05734,2}

6 Chapter 1. Rolling an Ellipse Along a Curve

TopCirc = EllipseF[5.229238280827457]
{3.97657,2.26124}

BotCirc = {4, 2}

4,2}

U = TopCirc — CenCirc
{0.919232,0.261239}

V = BotCirc — CenCirc

{0.942658,0}

Oval = VectorAngle[U, V]

0.276893

180
Oval —
™

15.8648

So from above, we have approximately 15.86 degrees to rotate, or 0.28
radians. So now we need to move the ellipse to the origin, rotate, and then
finally place it back so that its center is back at the original center. To do
this, we take the ellipse function F(t), and subtract the center (2,4) from the
corresponding components. Next, we rotate using the rotation matrix

cos(f) —sin(0)

= | sin(d) cos(h) (1.4)
and our formula for the rotated ellipse, Fy(t) is now given by
Fy(t) = Ag(F(t) — (2,4)) + (2,4). (1.5)

EllipseShift = EllipseF[t] — {2, 4}
{4Cos][t], 2Sin[t]}

RotMatrix[0_] = {{Cos[0], —Sin[0]}, {Sin[0], Cos[0]}};
(NewEllipse [t-] = RotMatrix[—6val].EllipseShift) // MatrixForm

3.84764 Cos|t] 4 0.546736 Sin]t]
—1.09347 Cos|t] + 1.92382 Sin]t]

NewEllipsePlot = ParametricPlot[Flatten[NewEllipse[t] + {2, 4}],
{t, 0, 2 7}, PlotStyle—{Thickness[0.007], Blue}];

Show[NewEllipsePlot, EllipsePlot, TouchPlots, CenterPlot, LinePlot,

1.2 The First Step 7

NextTouch, AxesOrigin—{0, 0}, PlotRange—{{—3, 8}, {0, 7}}]

y

I I I I I X
-2 2 4 6 8

Figure 1.6: Original ellipse and the rotated ellipse, both at center (2,4).

We have successfully rotated the ellipse, now we need to move it into the
correct position. This must be a simple shift of some kind, but we need to find
the right one, keeping in mind that we wish to automate this process. The
one thing we must be sure of, is that the lowest point on the rotated ellipse
(corresponding to t = 5.229238282) must move to the point (4, 2) since that is
how far to the right we are rolling the ellipse along the horizontal line. Corre-
spondingly, the original center (2, 4) must therefore be shifted the same amount!

LowestPoint = NewkEllipse[5.229238280827457]

{1.42596, —2.21286}

ShifT = BotCirc — LowestPoint

{2.57404,4.21286}

(NewNewEllipse [t_] = NewEllipse[t] + ShifT) // MatrixForm

2.57404 + 3.84764 Cos|t] 4 0.546736 Sin]t]
4.21286 — 1.09347 Cos]t] + 1.92382 Sin[t]

NewNewEllipsePlot = ParametricPlot[Flatten[NewNewZEllipse[t]],
{t, 0, 2 7}, PlotStyle—{Thickness[0.007], Blue}];

NewCenterPlot = Graphics[{PointSize[0.015], Black,
Point[{ShifT}]}];

Show[NewNewEllipsePlot, EllipsePlot, TouchPlots, CenterPlot,
LinePlot, NextTouch, NewCenterPlot, AxesOrigin—{0, 0},

8 Chapter 1. Rolling an Ellipse Along a Curve

PlotRange —{{—3, 8}, {0, 7}}]

y

Figure 1.7: Original ellipse and the rotated ellipse, both in the correct
positions.

1.3 Automating the Process

Now that we know how an ellipse can be rolled to to right a single fixed dis-
tance to the right, we need to determine how to create a process for repeating
the process. We will start the process from the previous section over, this time
making things more flexible so that the process can be repeated in a For loop.

The variables xc and yc will correspond to the center of the ellipse, and a
and b are the lengths along the z-axis and y-axis of the ellipse, respectively.

Xc = 25 yc = 4;
a=4;b = 2;

The definition of the ellipse, as a function of ¢, where 0 <t < 27 is given next.
EllipseF [t_] = {xc + a Coslt], yc + b Sin[t]};

The variable r corresponds to how far to the right we wish to go for each step.
The variable yline is the y =line that the ellipse will roll along.

r = 0.5;
yline = yc — b;

Next we calculate the total perimeter of the ellipse. This will help is later,
when we need to use the FindRoot command to locate the times that sweep

1.3 Automating the Process 9

out arclengths of length r given above, which is where we come up with the
formula in the definition of the variable S.

TotalPerimeter = NIntegrate[Norm[D|[EllipseF[t], t]], {t, 0, 2 7}]
19.3769

The variable NumRSteps tells us how many steps to the right we will go,
A[0] is the standard rotation matrix, t0 is the initial time corresponding to
the point on the ellipse that touches the line yline. The variable xval is where
we start the ellipse rolling, in the x-direction.

NumRSteps = 40;
S = (TotalPerimeter/r)/NumRSteps

0.968845
A[6-] = {{Cos[f], —Sin[6]}, {Sin[], Cos[6]}};

(Sufl ol)

3
t0 = N[f},

2
xval = xc;

We will want to plot each ellipse, and corresponding center, as we go through
the For loop. Therefore we initialize a couple of plots.

PlotEllipse[0] = ParametricPlot[EllipseF[t], {t, 0, 2 7}, PlotStyle—
{Thickness[0.007], Blue}];

PlotCenter[0] = Graphics[{PointSize[0.015], Black, Point[{{xc,

ye} 3
LinePlot = Graphics[{Thickness[0.005], Pink, Line[{{—10, 2}, {30,
2}}}5

We now do the For loop which, which automates each step from the pre-
vious section. See if you can determine exactly how the following code works,
and relate it back to the steps used in Section 1.2.

Fork = 1, k < NumRSteps, k ++,

ts = t1 /. FindRoot[NIntegrate[Norm[D[EllipseF[t], t]], {t, t0, t1}]
==r, {t1, t0, t0, t0 + 3 S};

M = D[EllipseF[t][[2]], t]/D[EllipseF[t][[1]], t];

10 Chapter 1. Rolling an Ellipse Along a Curve

m=M /. {t— ts};

xint = (x /. Solve[(y — EllipseF[ts][[2]] == m (x — EllipseF[ts][[1]]))
/- y— yline, x])[[1]];

Cpt = {xint, yline};

Tpt = EllipseF[ts];

Bpt = {xval 4+ k*r, yline};

u = Tpt — Cpt;

v = Bpt — Cpt;

Oval = VectorAngle[u, v];

EllipseCol[t_] = EllipseF[t] — {xc, yc};

NewEllipse[t_] = Simplify[A[—6val].EllipseCol]t]];

Lpt = NewEllipse[ts];

ShifT' = Bpt — Lpt;

EllipseF [t_]= NewEllipse[t] 4+ ShifT;

xc = ShifT[[1]];

yc = ShifT[[2]];

PlotEllipse[k] = ParametricPlot[EllipseF[t], {t, 0, 2 7}, PlotStyle—
{Thickness[0.007], Blue}];

PlotCenter[k] = Graphics[{PointSize[0.015], Black, Point[{{xc,
yc} 1}

Print[{k, t0, ts, m, xint, —Oval}];

t0 = ts;

]

Nlntegrate::nlim: t = t1 is not a valid limit of integration. >
{1,4.71239,4.83763,0.0629521, 2.25082, —0.062869 }
NlIntegrate::nlim: t = t1 is not a valid limit of integration. >
{2,4.83763,4.96438,0.0652499, 2.75234, —0.0651575 }

NIntegrate::nlim: t = t1 is not a valid limit of integration. >
General::stop: Further output of NIntegrate::nlim will be suppressed during
this calculation. >

{3,4.96438,5.09426, 0.0702456, 3.25399, —0.0701304}

{4,5.09426, 5.22924, 0.0788985, 3.7559, —0.0787354}
{5,5.22924, 5.37184,0.0931575, 4.25821, —0.0928894}
{6,5.37184, 5.52556,0.116996, 4.76112, —0.116466}
{7.5.52556, 5.69552, 0.158918, 5.26484, —0.1576}
{8,5.69552, 5.88903, 0.237402, 5.76913, —0.233087}
{9,5.88903,6.11347, 0.380616, 6.2707, —0.363685}

1.3 Automating the Process

11

{10, 6.11347, 6.36084, 0.526421, 6.75906, —0.48456}
{11, 6.36084, 6.59657, 0.447388, 7.23896, —0.42068}
{12,6.59657, 6.80115, 0.282734, 7.73273, —0.275542}
{13,6.80115,6.979,0.18273,8.23491, —0.180736}
{14,6.979,7.13813,0.129972, 8.73828, —0.129248}
{15,7.13813, 7.28444, 0.100698, 9.2412, —0.10036}
{16,7.28444,7.42196,0.083461,9.74358, —0.0832681}
{17,7.42196, 7.55351, 0.0730009, 10.2455, —0.0728716}
{18,7.55351,7.68123, 0.0667793, 10.7472, —0.0666803 }
{19,7.68123,7.80686, 0.0635364, 11.2488, —0.0634511}
{20,7.80686, 7.93193, 0.0626904, 11.7503, —0.0626085 }
{21,7.93193,8.05793, 0.0640984, 12.2518, —0.0640108}
{22,8.05793,8.18642, 0.0680005, 12.7533, —0.0678959}
{23,8.18642,8.31922,0.0751135, 13.2551, —0.0749727}
{24,8.31922, 8.4586, 0.0869358, 13.7573, —0.0867178}
{25,8.4586,8.60763,0.106491, 14.2599, —0.106091}
{26,8.60763,8.77073,0.140125, 14.7633, —0.139218}
{27,8.77073,8.95437,0.201724, 15.2675, —0.199053}
{28,8.95437,9.16669, 0.318175, 15.7709, —0.308047}
{29,9.16669, 9.40844, 0.486882, 16.2656, —0.453098}
{30,9.40844, 9.65271, 0.50424, 16.7456, —0.467034}
{31,9.65271,9.86923, 0.338826, 17.2334, —0.326686}
{32,9.86923,10.0562, 0.213117, 17.7337, —0.209976}
{33,10.0562, 10.2215, 0.146155, 18.237, —0.145127}
{34,10.2215,10.3721,0.109891, 18.7402, —0.109452}
{35,10.3721, 10.5126, 0.088961, 19.2427, —0.0887274}
{36,10.5126, 10.6461, 0.0763462, 19.7448, —0.0761984}
{37,10.6461, 10.775,0.0687253, 20.2466, —0.0686175}
{38,10.775,10.9012, 0.0644568, 20.7482, —0.0643678}
{39,10.9012, 11.0264, 0.0627452, 21.2497, —0.062663 }

12 Chapter 1. Rolling an Ellipse Along a Curve

{40,11.0264,11.1518,0.0632966, 21.7512, —0.0632122}

Notice that for each step in the For loop, the values of the variables k, tO,
ts, m, xint, and —@val are displayed. As a general rule, this is an important
tool in helping to determine the behavior (or lack thereof) of your code as it
progresses through successive iterations of the loop. Now that we have com-
pleted the rotation, we simply need to put the plots together in a Manipulate
command.

Manipulate[Show[PlotEllipse[h]|, PlotCenter[h], LinePlot, PlotRange
—{{-5, 30}, {0, 10}}, AxesOrigin—{0, 0}, ImageSize— {400, 200},
{{h, 0, "Step"}, 0, 40, 1}]

Step

)

10+

Figure 1.8: The 27th frame in the animation of rolling the ellipse.

Show|[Table[PlotCenter[k], {k, 0, 40}], PlotRange—{{—5, 30}, {0,
10}}, Axes—True, AxesOrigin—{0, 0}]

101

. \ \ \ X
-5 5 15 25

Figure 1.9: The centers of each of the ellipses throughout the rotation.

1.4 Further Questions to Consider 13

Figure 1.8 is the culmination of all of our work thus far. Unfortunately, we
cannot display the actual animation here, but it appears that we have success-
fully rolled an ellipse along a horizontal line! Showing all 41 ellipses at the same
time would not help us view the process at all. In Figure 1.9, the center of each
ellipse is displayed. Note that the distance between centers is significantly less
when the curvature of the portion of the ellipse resting on the line is smallest.
This corresponds to the portions of the ellipse closest to the minor axes.

1.4 Further Questions to Consider

We end with a discussion (and leave you with questions) on how to generalize
this process. Before we do this, we must realize what restrictions were used in
all the work done previous. The most important assumption that was made,
was that our curve that we rolled the ellipse along was actually a horizontal line.

1. How do things change if we decide not to use a horizontal line, but a line
with nonzero slope instead?

If you can determine the answer to this question, then the following should
be answerable as well. Remember, that if we were rolling an ellipse a distance
r to the right along a horizontal line, where the ellipse touched the line at
the point (z,,¥p), we then knew that the rotated ellipse would be touching
the horizontal line at the point (x, + r,y,). This is clearly not the case for a
line with nonzero slope! Furthermore, we also use the fact that the line was
horizontal to help compute the angle of rotation needed. This must change as
well! If you can figure out how to adapt the previous work to allow for lines on
nonzero slope, then the following questions may also be answerable.

2. What must be modified to roll an ellipse along a curve given in the form

y=f(x)?

3. What happens if you wish to roll an ellipse along a parametric curve of
the form (z,y) = (z(s),y(s))? Is this really a generalization of question 1 or is
more mathematics required?

