
Principles of Linear Algebra With

Mathematica®

The Newton–Raphson Method

Kenneth Shiskowski and Karl Frinkle
© Draft date March 13, 2012

Contents

1 The Newton–Raphson Method for a Single Equation 1
1.1 The Geometry of the Newton–Raphson Method 1
1.2 Examples of the Newton–Raphson Method 9
1.3 An Example of When the Newton–Raphson Method Does the

Unexpected . 15

2 The Newton–Raphson Method for Square Systems
of Equations 19
2.1 Newton–Raphson for Two Equations in Two Unknowns 19
2.2 Newton–Raphson for Three Equations in Three Unknowns . . . 28

v

Chapter 1

The Newton–Raphson
Method for a Single
Equation

1.1 The Geometry of the Newton–Raphson
Method

In studying astronomy, Sir Isaac Newton (1642–1727) needed to solve an equa-
tion f(x) = 0 involving trigonometric functions such as sine. He could not do
it by any algebraic technique he knew, and all he really needed was just a very
good approximation to the equation’s solution. To satisfy his requirements,
Sir Newton developed the basic algorithm we now call the Newton–Raphson
Method. Newton discovered this method in a purely algebraic format which
was very difficult to use and understand. The general method and its geomet-
ric basis was actually first seen by Joseph Raphson (1648–1715) upon reading
Newton’s work; although Raphson only used it on polynomial equations to find
their real roots.

The Newton–Raphson method is the true bridge between algebra (solving
equations of the form f(x) = 0 and factoring) and geometry (finding tangent
lines to the graph of y = f(x)). What follows is an exploration of the Newton–
Raphson method and how tangent lines help us solve equations, both quickly
and easily — although not for exact solutions, but approximate ones.

The reason that we are studying the Newton–Raphson method in this book
is that it can also solve square non-linear systems of equations using matrices
and their inverses as we shall see later. Part of the wonderful effectiveness
of the Newton–Raphson method is that it can solve either a single equation,
or a square system of equations, for its real or complex solutions, to as many

1

2 Chapter 1. Newton–Raphson Method for a Single Equation

decimal places as you desire.

Now we will discuss the important application of using tangent lines to solve
a single equation of the form f(x) = 0 for approximate solutions, either real or
complex.

Example 1.1.1. The best way to understand the simplicity of this method,
and its geometric basis, is to look at an example. Let’s say that we want to
solve the equation

x3 − 5x2 + 3x+ 5 = 0 (1.1)

for an approximate solution x. We can easily estimate where the real solutions
are by finding the x-intercepts of the graph of y = x3−5x2+3x+5. Remember
that the total number of real or complex roots to any polynomial is its degree
(or order), which in this case is three. Also, when a polynomial has all real
coefficients, as this one does, all of the complex roots (if there are any) must
occur as complex conjugate pairs. This particular polynomial has exactly three
real roots and no complex roots, as can be seen from its graph in Figure 1.1.

F[x] = x3 − 5 x2 + 3x + 5;

RootsF = NSolve[F[x] == 0, x]

{{x → −0.709275}, {x → 1.80606}, {x → 3.90321}}

RootsPlot = Graphics[{PointSize[0.025], Red, Point[{x, 0} /.

RootsF]}];
PlotF = Plot[F[x], {x, −3, 7}, PlotStyle→{Blue, Thickness[0.007]}];
Show[PlotF, RootsPlot, PlotRange→{{−2, 5}, {−5, 6}}]

-2 2 4
x

-3

3

6

y

Figure 1.1: The three roots of the polynomial x3 − 5x2 + 3x+ 5 are its three
x-intercepts (circled)

1.1 Geometry of the Newton–Raphson Method 3

After inspecting Figure 1.1, we see that the three real roots of the cubic,
one negative and two positive, occur close to the values x = −1, x = 2, and
x = 4. Let us first try to approximate the root located near x = 4 as accurately
as we can.

First, let us see what FindRoot will give us for just the solution near
x = 4. FindRoot uses many algorithms similar to, and including, the Newton–
Raphson method, in combination, to approximate solutions both to a single
equation or a square system of equations.

FindRoot[F[x] == 0, {x, 4}, WorkingPrecision→20]

{x → 3.9032119259115532876}

The idea that Raphson had was to take a value of x near x = 4, say x = 5,
and compute the tangent line to the graph of our function f(x) at x = 5. This
tangent line goes through the point (5, f(5)) = (5, 20) and has slope df

dx (5),

where df
dx is the derivative function of f(x). Now Mathematica can easily com-

pute both f(5) and df
dx (5).

F[5]

20

DF[x] = D[F[x], x]

3−10 x+3 x2

DF[5]

28

So the slope of the tangent line to the graph of y = f(x) at the point (5, 20)
is 28 and the equation of this tangent line at x = 5 is

y − f(5) =
df

dx
(5)(x− 5)

or
y = 28x− 120

Let us next graph together this tangent line and the original function f(x).

ArrowPlots = Graphics[{Arrowheads[.05], Thickness[.010], Yellow,
Arrow[{{5, −10}, {5, −4.5}}], Black, Arrow[{{30/7, −10}, {30/7,
−4.5}}], Red, Arrow[{{3.9, 10}, {3.9, 2}}]}];

TangentF = Plot[28 x − 120, {x, −3, 7}, PlotStyle→{Black, Thick-
ness[0.007]}];

4 Chapter 1. Newton–Raphson Method for a Single Equation

Show[ArrowPlots, PlotF, TangentF, RootsPlot, PlotRange→{{3.5,
5.5}, {−20, 30}}, Axes→True, AspectRatio→2/3]

4 5
x

-15

15

30

y

Figure 1.2: Tangent line to x3 − 5x2 + 3x+ 5 at x = 5

Upon inspection of Figure 1.2, note that the tangent line at x = 5 crosses
the x-axis much closer to our solution near x = 4 than our very rough estimate
of x = 5, which was the x-value used to construct the tangent line.. The x-
intercept of this tangent line is the solution for x to the tangent line’s equation:

x = 5− f(5)
df
dx (5)

=
30

7
≈ 4.285714286

(1.2)

So x-intercepts of tangent lines seem to move you closer to the x-intercepts
of their function f(x), which is what Raphson saw. Newton did not see this
aspect of the method, as he forgot to look at the geometry of the situation and
instead he concentrated on the algebra.

Raphson’s next idea was to try to move even closer to the root of f(x) (the
x-intercept of y = f(x) or solution to f(x) = 0) by repeating the tangent line,
but now at the point given by this new value of x = 4.285714286, which is the
x-intercept of the previous tangent line. Let uss do it repeating the above work
and see if Raphson was correct to do this. To make this process more readily
programmable, we will call our starting guess near the root x0 = 5, and the
x-intercept of the tangent line at x = 5 we will call x1 = 4.285714286. Notice
that the value of x1 is closer to the root than the starting guess x0.

x0 = SetPrecision[5.00, 10];

x1 = (x0 − F[x0]/DF[x0])

4.28571429

1.1 Geometry of the Newton–Raphson Method 5

F[x1]

4.737609

DF[x1]

15.244898

F[x1] − x1DF[x1]

−60.597668

NextIntercept = Solve[F[x1] + DF[x1] (x − x1) == 0, x]

{{x → 3.974947}}

ArrowPlots2 = Graphics[{Arrowheads[.05], Thickness[.010], Blue,
Arrow[{{3.97495, −10}, {3.97495, −4.5}}]}];
TangentF2 = Plot[15.2449 x − 60.5977, {x, −3, 7}, PlotStyle→{Red,
Thickness[0.007]}];
Show[ArrowPlots, ArrowPlots2, PlotF, TangentF, TangentF2, Roots-
Plot, PlotRange→{{3.5, 5.5}, {−20, 30}}, AspectRatio→1, Axes→
True]

4 5
x

-15

15

30

y

Figure 1.3: Tangent lines at x = 5 and x = 4.28571

Upon inspection of Figure 1.3, it should be clear that Raphson had a very
good idea when he used tangent lines to approximately solve single equations

6 Chapter 1. Newton–Raphson Method for a Single Equation

of the form f(x) = 0. This is, of course, assuming that our picture above is
generally true. Happily for both Raphson and us, this picture is typical, and
successive tangent lines and their x-intercepts do move closer and closer to the
x-intercept of the underlying function f(x).

The general formula for the x-intercept of the tangent line to the graph of
y = f(x) at the point where x = a is

x = a− f(a)
df
dx (a)

, (1.3)

since the equation of the tangent line at x = a is

y = f(a) +
df

dx
(a)(x− a)

If you now solve

f(a) +
df

dx
(a)(x− a) = 0

for x, you will get equation (1.3).
Let us use this formula to get the successive x-intercepts to the correspond-

ing tangent lines. From the output, we see that the values of the x-intercepts
are moving towards the root of our polynomial which is located approximately
at x = 3.9, and is depicted as the red dot on the x-axis, located below the red
arrow, in Figure 1.3.

In the following Mathematica code, we set the number of digits to twelve,
instead of the default of ten, since we want to get ten accurate digits when we
round down to ten.

x0 = N[5, 30];

For[k = 1, k ≤ 8, k++, xk = (xk−1 − F[xk−1]/DF[xk−1]);]

Table[{ ''x''k, ''='', N[xk, 12]}, {k, 1, 8}] // MatrixForm

x1 = 4.28571428571
x2 = 3.97494740868
x3 = 3.90652292594
x4 = 3.90321950278
x5 = 3.90321192595
x6 = 3.90321192591
x7 = 3.90321192591
x8 = 3.90321192591


The value of the x-intercept after six iterations converges to a value which

agrees with the next two iterations of the method to ten decimal places. No-
tice that this also agrees to ten decimal places with the FindRoot value of
x = 3.9032119259115532876. We may have even arrived at this value in the

1.1 Geometry of the Newton–Raphson Method 7

same way that FindRoot did, since the Newton–Raphson method is part of
FindRoot’s root finding procedures. To summarize, we arrived at an ap-
proximation to the root accurate to ten decimal places after only six repeated
applications of the Newton–Raphson method. This is a very fast procedure
even when our starting guess of x = 5 is not very close to the root nearest to
it.

It should be noted that you stop the Newton–Raphson method when you
get a repetition in the value for two consecutive x-intercepts of your tangent
lines accurate to the number of digits you desire. This is the reason we could
could stop after x6 was computed, since |x6 − x5| < 10−10, and thus they agree
to ten decimal places.

Newton’s method will, in general, solve equations of the form f(x) = 0, for
the solution nearest a starting estimate of x = x0. It then creates a list of xn

values, where each xn (the nth element of this list) is the x-intercept of the
tangent line to y = f(x) at the previous value in the list, which is xn−1. This
gives the general formula for xn to be

xn = xn−1 −
f(xn−1)
df
dx (xn−1)

(1.4)

starting with x0. Each xn is usually closer than the previous xn−1 to being
a solution to f(x) = 0. The xn values can all be gotten from iterating the
starting guess x0 in the iteration function

g(x) = x− f(x)
df
dx (x)

(1.5)

This means that xn+1 = g(xn) for all n starting with 0.
The method we are using is called iteration since it begins with a starting

guess value of x0 and then finds the iteration values x1, x2, . . . thereafter using
the same formula g(x) based on the previous value. The function g(x) which
computes these iteration values is called the iterator.

The following procedure will create a table of values of this Newton sequence
of iterates from Example 1.1.1 and x0 values near our three roots. Each column
in this table corresponds to Newton’s method applied to one of our initial
guesses. We will carry out 10 iterations of the Newton–Raphson method to
generate the table. We suggest trying different values for the three x0 initial
values to see how convergence to each root is affected. The three initial x0

values below were chosen from the graph of f(x) so that the tangents at these
points will intersect the x-axis closer to the root than the initial guess. We stop
iterating with the iterator g(x) when two consecutive values in the sequence of
xn values are the same to the accuracy desired.

We will use the three starting guesses for x0 of 0, 1, and 5 or the list N[{0,
1, 5}, 30], where the command N is used to tell Mathematica that we want

8 Chapter 1. Newton–Raphson Method for a Single Equation

decimal approximations and not exact values, since, to Mathematica any num-
ber with a decimal point in it is considered an approximation. Without these
decimal points Mathematica would compute exact values giving us horrendous
fractions for the values of our iterates instead of decimal approximations.

x0 = N[{0, 1, 5}, 30];
Newt[x] = x − F[x]/DF[x]

x−5 + 3 x− 5 x2 + x3

3− 10 x + 3 x2

N[NestList[Newt[#] &, x0, 10], 12] // MatrixForm

0 1.00000000000 5.00000000000
−1.66666666667 2.00000000000 4.28571428571
−1.00529100529 1.80000000000 3.97494740868
−0.751331029986 1.80606060606 3.90652292594
−0.710320317972 1.80606343352 3.90321950278
−0.709276029620 1.80606343353 3.90321192595
−0.709275359437 1.80606343353 3.90321192591
−0.709275359437 1.80606343353 3.90321192591
−0.709275359437 1.80606343353 3.90321192591
−0.709275359437 1.80606343353 3.90321192591
−0.709275359437 1.80606343353 3.90321192591


NSolve[F[x] == 0, x, WorkingPrecision→15]{{

x → −0.709275359436923
}
,
{
x → 1.80606343352537

}
,{

x → 3.90321192591155
}}

TheNSolve command has found the roots to fifteen decimal place accuracy
and agrees with, to 12 decimal places, the answer obtained by the Newton
iterator. You have just seen the Newton–Raphson method solve for the three
real roots of our polynomial f(x) simultaneously, working on finding each root
based on three different starting guesses near them.

In the next section, we will continue looking at more examples of the uses
of the Newton–Raphson algorithm — finding complex roots to polynomials,
solving for thirteenth roots of a number, and finding inverse trigonometric
function values.

Before we conclude this section, let’s animate the tangent lines to our cu-
bic polynomial f(x) and see them moving along the polynomial’s graph. This
might help you understand why the Newton–Raphson method works geomet-
rically if you watch where these tangent lines’ x-intercepts are going. We will
plot tangent lines for equally spaced points from x = −2 to x = 6. Figure 1.4
shows a frame in the animation, corresponding to the tangent line at x = 0.9.

1.2 Examples of the Newton–Raphson Method 9

Notice where the tangent line intersects the x-axis, and how close to the root
this point of intersection is.

Manipulate[TangentLine = F[a] + DF[a] (x − a);
AxisIntercept = Solve[F[a] + DF[a] (x − a) == 0, x];
PlotIntercept = Graphics[{PointSize[0.025], Black, Point[{x, 0} /.
AxisIntercept[[1]]]}];
TangentPlot = Plot[TangentLine, {x, −3, 7}, PlotStyle→{Red,
Thickness[0.007]}, PlotRange→{{−2, 5}, {−5, 6}}, AspectRatio
→1];
Show[TangentPlot, PlotF, PlotIntercept, PlotRange→{{−2, 5},
{−5, 6}}, AspectRatio→1],
{{a, −1, ''a''}, −1, 4.5, 0.09}]

a

-2 2 4
x

-3

3

6

y

Figure 1.4: Tangent lines to f(x) = x3 − 5x2 + 3x+ 5 and corresponding
x-intercepts

1.2 Examples of the Newton–Raphson Method

In this section, we will use the machinery developed in Section 1.1 and apply
the Newton–Raphson method to specific problems.

10 Chapter 1. Newton–Raphson Method for a Single Equation

Example 1.2.1. As example of the power of Newton’s method, we will use it
to find all the roots of the polynomial H(x) = 8x5 − 3x4 + 2x3 + 9x− 5. This
polynomial has both real and complex roots. We will then use these five roots
to factor the polynomial completely. Since this polynomial has all real coef-
ficients, the complex roots must occur in complex conjugate pairs. This fact
about complex roots usually means we only need find roughly half as many
roots as the degree of the polynomial.

H[x] = 8 x5 − 3 x4 + 2x3 + 9x − 5;

Plot[H[x], {x, −10, 10}, PlotStyle→{Blue, Thickness[0.007]}]

-10 -5 5 10
x

-300 000

-100 000

100 000

300 000

y

Figure 1.5: Graph of f(x) = 8x5 − 3x4 + 2x3 + 9x− 5.

Plot[H[x], {x, −3, 3}, PlotStyle→{Blue, Thickness[0.007]}, Plot-
Range→{{−3, 3}, {−30, 30}}]

-3 -1 1 3
x

-30

-10

10

30

y

Figure 1.6: Graph of f(x) = 8x5 − 3x4 + 2x3 + 9x− 5 zoomed in near the real
root.

If we graph this polynomial (see Fig. 1.5) for x ∈ [−10, 10], it is difficult
to tell how many real roots the polynomial has. To convince ourselves that

1.2 Examples of the Newton–Raphson Method 11

there is indeed only one real root, we need to shorten the domain of the graph.
This is done in Figure 1.6 and we now know that this polynomial has only one
real root. Why does an odd degree polynomial with all real coefficients have
to have at least one real root? It is because there are going to be an even
number of complex roots since they occur in complex conjugate pairs while the
total number of all the roots must be the degree of the polynomial, which we
assumed to be odd.

DH[x] = D[H[x], x]

9+6 x2−12 x3+40 x4

x0 = N[{1, 1 + I, −1 − I}, 40];
Newt[x]= x − H[x]/DH[x]

x−−5 + 9 x + 2x3 − 3 x4 + 8x5

9 + 6 x2 − 12 x3 + 40 x4

(NewtMat = N[NestList[Newt[#] &, x0, 6], 9]) // MatrixForm

1.00000000 1.00000000 + 1.00000000 i −1.00000000− 1.00000000 i

0.744186047 0.829902292 + 0.866465925 i −0.835030231− 0.857491933 i

0.569703018 0.708086470 + 0.808269082 i −0.747580713− 0.782085408 i

0.518612910 0.651804769 + 0.816692621 i −0.723136047− 0.760517831 i

0.516111667 0.650719047 + 0.825354992 i −0.721409234− 0.758895715 i

0.516106685 0.650847675 + 0.825217125 i −0.721401098− 0.758887036 i

0.516106685 0.650847755 + 0.825217163 i −0.721401098− 0.758887036 i


RootsH = {NewtMat[[6, 1]], NewtMat[[6, 2]], Conjugate[NewtMat[[
6, 2]]], NewtMat[[6, 3]], Conjugate[NewtMat[[6, 3]]]}{
0.516106685, 0.650847675 + 0.825217125 i, 0.650847675− 0.825217125 i,

− 0.721401098− 0.758887036 i,−0.721401098 + 0.758887036 i
}

NSolve[H[x], x]{{
x → −0.721401− 0.758887 i

}
,
{
x → −0.721401 + 0.758887 i

}
,{

x → 0.516107
}
,
{
x → 0.650848− 0.825217 i

}
,
{
x → 0.650848 + 0.825217 i

}}
P = Coefficient[H[x], x, 5] Product[x − RootsH[[k]], {k, 1, 5}]

8 ((−0.650847675− 0.825217125 i) + x)((−0.650847675 + 0.825217125 i) + x)

(−0.516106685 + x)((0.721401098− 0.758887036 i) + x)

((0.721401098 + 0.758887036 i) + x)

12 Chapter 1. Newton–Raphson Method for a Single Equation

Chop
[
Expand[P], 10−6

]
−4.9999992+8.999999 x+2.000000 x3−2.9999987 x4+8x5

H[x]

−5+9 x+2x3−3 x4+8x5

The polynomial P , defined as P above, gives the complete factoring of f(x)
using the roots found from Newton’s method. When we expand P we do not
get f(x) back exactly due to rounding error in our roots.

Example 1.2.2. Now let’s use the Newton–Raphson method to solve the equa-
tion

ex = cos(2x) + 5 (1.6)

for its single real solution where we actually solve

f(x) = ex − cos(2x)− 5 = 0

We will get that the solution is x = 1.40054551401 after five iterations starting
with x0 = 2. In order to see where the solution to this equation lies, we will
plot each side of the equation separately and find their intersection point (see
Figure 1.7).

Clear[H]

H[x] = e
x; K[x] = Cos[2 x] + 5;

Plot[{H[x], K[x]}, {x, 0, 3}, PlotStyle→{{Red, Thickness[0.007]},
{Blue, Thickness[0.007]}}, PlotRange→{{0, 3}, {0, 15}}]

0 1 2 3
x0

3

6

9

12

15

y

Figure 1.7: The intersection of h(x) = ex and k(x) = cos(2x) + 5 occurs close
to x = 1.5.

1.2 Examples of the Newton–Raphson Method 13

F[x] = H[x] − K[x]

−5+ e
x −Cos[2 x]

DF[x] = D[F[x], x]

e
x +2Sin[2 x]

x0 = SetPrecision[2, 20];

Newt[x] = x − F[x]/DF[x]

x−−5 + e
x − Cos[2 x]

e
x + 2Sin[2 x]

(NewtMat = N[NestList[Newt[#] &, x0, 5], 12]) // MatrixForm
2.00000000000
1.48213342879
1.40082183928
1.40054551633
1.40054551401
1.40054551401



Example 1.2.3. For our next implementation of the Newton–Raphson method,
we will find arctan(1.26195) from the function tan(x) alone. If we let x =
arctan(1.26195), then by taking tangent of both sides we have

tan(x) = tan(arctan(1.26195)) = 1.26195

Rewriting this as f(x) = tan(x)− 1.26195 = 0, the function f(x) has the value
arctan(1.26195) as a root. To pick an initial guess, we examine Figure 1.7 and
note that since arctan(x) is always between −π

2 and π
2 , if we let x0 = 1 > 0,

then arctan(x) > 0 as well.

F[x] = SetPrecision[Tan[x] − 1.26195000000000000, 20]

−1.2619500000000000000+Tan[x]

DF[x] = D[F[x], x]

Sec[x]2

Newt[x] = x − F[x]/DF[x]

x−Cos[x]2(−1.2619500000000000000+Tan[x])

14 Chapter 1. Newton–Raphson Method for a Single Equation

x0 = SetPrecision[1, 20];

(NewtMat = SetPrecision[NestList[Newt[#] &, x0, 5], 20]) // Ma-
trixForm

1.0000000000000000000
0.91374803639682598467
0.90090833143814183820
0.90069179844322014119
0.90069173923562329617
0.90069173923561887235


{ArcTan[1.26195], ArcTan[SetPrecision[1.26195, 20]]}

{0.900692, 0.90069173923561883576}

Example 1.2.4. As the last example of this section, we use Newton’s method
to find

13
√
8319407225, or 83194072251/13. This thirteenth root can be found

by letting x = 83194072251/13 and then rewriting this equation without the
root as

x13 − 8319407225 = 0 (1.7)

We then have
f(x) = x13 − 8319407225 = 0 (1.8)

Therefore, we now have our function f(x) to apply Newton’s method. Since

513 = 1220703125 < 8319407225 < 13060694016 = 613

we can take the starting guess to be either x0 = 5 or x0 = 6, since choosing
an integer for the starting value is an easy way to pick an initial value of x0

(although this need not be required). You could also plot y = f(x) and look
for the x-intercept of this graph.

513

1 220 703 125

613

13 060 694 016

F[x] = x13 − 8 319 407 225;

DF[x] = D[F[x], x];

Newt[x] = x − F[x]/DF[x]

x−−8319407225 + x13

13 x12

1.3 When the Newton–Raphson Method Does the Unexpected 15

x0 = SetPrecision[6, 20];

(NewtMat = SetPrecision[NestList[Newt[#] &, x0, 5], 12]) // Ma-
trixForm

6.00000000000
5.83245253211
5.79678752512
5.79541014785
5.79540818028
5.79540818028


N[8 319 407 2251/13, 12]

5.79540818028

Examples 1.2.3 and 1.2.4 help to illustrate that Newton’s method may be
used to find the values of inverse trigonometric functions using the regular
trigonometric functions and to get roots of numbers using powers. In a similar
fashion, Newton’s method can also find the values of logarithms using exponen-
tials. In chapter 2, we shall see that Newton’s method also scales in dimension
to to solve square systems of non-linear equations, not just a single equation.

1.3 An Example of When the Newton–Raphson
Method Does the Unexpected

So far, all of our examples have worked out wonderfully. Our initially guesses
converged to a root of the function in question, and did so remarkably fast.
The following is an instance of Newton’s method in which a very particular x0

gives rise to convergence to a root not closest to x0, and does so very slowly.
We will attempt to determine exactly why this behavior occurs.

Example 1.3.1. If we attempt to solve the trigonometric equation sin(x) = 0,
we should first notice that the roots are easy to find, and are located at all
integer multiples of π. One would expect that if we chose a starting value
relatively close to x = π, Newton’s method should converge to x = π. So,
let us use x0 = 1.97603146838 as our starting value. Before you look at the
output of Newton’s method, be sure to look at the graph of sin(x), as depicted
in Fig. 1.8, near our starting value and try to determine for yourself what the
end result should be.

F[x] = Sin[x];

16 Chapter 1. Newton–Raphson Method for a Single Equation

Plot[F[x], {x, 0, 2π}, PlotStyle→{Blue, Thickness[0.007]}]

Π 2 Π
x

-1

1

y

Figure 1.8: Graph of f(x) = sin(x) on the interval [0, 2π].

x0 = SetPrecision[1.97603146838000000, 20];

DF[x] = D[F[x], x];

Newt[x] = SetPrecision[x − F[x]/DF[x], 20]

x− 1.0000000000000000000Tan[x]

NewtMat = SetPrecision[NestList[Newt[#] &, x0, 30], 20]{
1.9760314683800000000, 4.3071538388110351013, 1.9760314683063380452,

4.3071538392113238509, 1.9760314661311163369, 4.3071538510317647441,

1.9760314018972838234, 4.3071542000869239695, 1.9760295050836902494,

4.3071645076791808222, 1.9759734905665374138, 4.3074689482982437180,

1.9743176314664917498, 4.3165112964510746414, 1.9238373689589648698,

4.6376992990975918809,−8.7261251905529504699,−9.5661131584604639451,

− 9.4238292930300700030,−9.4247779610539707931,

− 9.4247779608704149723,−9.4247779608704149723,

− 9.4247779608704149723,−9.4247779608704149723,

− 9.4247779608704149723,−9.4247779608704149723,

− 9.4247779608704149723,−9.4247779608704149723,

− 9.4247779608704149723,−9.4247779608704149723,

− 9.4247779608704149723
}

N[−3π]

−9.42478

Now lets plot the first two tangent lines for Newton’s method to y = f(x) =
sin(x). It will help to illustrate what we see as this sequence of values move

1.3 When the Newton–Raphson Method Does the Unexpected 17

towards x = −2π (see Figure 1.9).

TLx0 = Expand[F[x0] + (D[F[x], x] /. x→x0) (x − x0)]

1.6980302279867648055− 0.3942348686703738045 x

TLx1 = Expand[F[NewtMat[[2]]] + (D[F[x], x] /. x→NewtMat[[2]])
(x − NewtMat[[2]])]

0.779020506375484484− 0.3942348686598524074 x

Plot[{F[x], TLx0, TLx1}, {x, 0, 2π}, PlotStyle→{{Blue,
Thickness[0.008]}, {Red, Thickness[0.006]}, {Black, Thickness[0.006]
}}]

Π 2 Π
x

-1

1

y

Figure 1.9: Graph of f(x) = sin(x) and parallel tangent lines.

For this starting value of x0 = 1.97603146838, Newton’s method accurately
locates −2π to twelve decimal place accuracy. Clearly this root is not the
closest solution to sin(x) = 0 at x0. The values in this sequence approximately
alternate each other for a long time until suddenly they move off towards −2π.
They do this because the tangent lines used in the method are approximately
parallel lines where each has x-intercept approximately the x-coordinate value
of the other. You should see what happens to this sequence of iterates if you
increase the number of digits to sixteen.

In concluding this first chapter, we simply with to reiterate that the Newton–
Raphson method works quickly to give very good accuracy in most instances.
It normally takes no more than five to ten iterations from a reasonable initial
guess x0 to get the solution accurate to ten or more decimal places. Each iter-
ation usually produces greater accuracy, and you reach the accuracy you want
when two consecutive iterations agree in value to this accuracy.

Chapter 2

The Newton–Raphson
Method for Square Systems
of Equations

2.1 Newton–Raphson for Two Equations in Two
Unknowns

In this section we will discuss the Newton–Raphson method for solving square
(as many equations as variables) systems of two non-linear equations

f(x, y) = 0, g(x, y) = 0

in the two variables x and y. In order to do this we must combine these two
equations into a single equation of the form F (x, y) = 0 where F must give us
a two component column vector and 0 is also the two component zero column
vector, that is,

F (x, y) =

[
f(x, y)
g(x, y)

]
(2.1)

and 0 =

[
0
0

]
. Then clearly the equation F (x, y) = 0 is the same as

[
f(x, y)
g(x, y)

]
=

[
0
0

]
(2.2)

which is equivalent to the system of two equations f(x, y) = 0 and g(x, y) = 0.
Now let F : R2 → R2 be a continuous function which has continuous first

partial derivatives where F is defined as in equation (2.1) for variables x, y and
component functions f(x, y), g(x, y). We wish to solve the equation F (x, y) =

19

20 Chapter 2. Newton–Raphson Method for Square Systems

0 which is really solving simultaneously the square system of two non-linear
equations given by f(x, y) = 0 and g(x, y) = 0.

In order to do this, we shall have to generalize the one variable Newton–
Raphson method iterator formula for solving the equation f(x) = 0 given by
the sequence pk for p0 the starting guess where

pk+1 = pk − f(pk)
df
dx (pk)

(2.3)

or
pk+1 = g(pk)

where

g(pk) = pk − f(pk)
df
dx (pk)

(2.4)

is the (single equation) Newton–Raphson iterator.
To see how this can be done, you must realize that now in the two equation

case that

p0 =

[
x0

y0

]
(2.5)

is our starting guess as a point in the xy-plane written as a column vector,

pk =

[
xk

yk

]
(2.6)

is the kth iteration of our method, and

F (pk) =

[
f(xk, yk)
g(xk, yk)

]
are all two component column vectors in R2 and not numbers as in the single
variable case. Thus, dividing a two component column vector by a derivative
requires that we be dividing by a 2 × 2 matrix, or multiplying by the inverse
of this matrix. Thus, we need to replace df

dx in our old iterator g(x) by a 2× 2

matrix consisting of the four partial derivatives of F (x, y), which are ∂f
∂x ,

∂f
∂y ,

∂g
∂x , and

∂g
∂y .

The choice of this new derivative matrix is the 2×2 Jacobian matrix J(x, y),
of F (x, y), given by the 2× 2 matrix

J(x, y) =

 ∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

 (2.7)

Other choices for this 2 × 2 matrix of partial derivatives are possible and you
should see if they will also work in place of this Jacobian matrix, but this

2.1 Newton–Raphson for Two Equations in Two Unknowns 21

Jacobian matrix seems most logical if you think about the fact that for F (x, y),
the first row is f(x, y) and g(x, y) is in the second row while the variables are
given as x first and y second in all these functions. Thus, the Newton–Raphson
array (list or sequence) is now for a starting vector p0, as defined in equation
(2.5), given by

pk+1 = pk − (J(pk))
−1

F (pk) (2.8)

where the vector F (pk) is multiplied on its left by the inverse of the Jacobian
matrix J(x, y) evaluated at pk, i.e., J(pk) = J(xk, yk).

Note that finding (J(pk))
−1

in each iteration is a formidable task if the
system of equations is large, say 25× 25 or more, and so at each iteration you
can instead solve for pk+1 by solving the square linear system of equations

J(pk) pk+1 = J(pk) pk − F (pk)

where the components of pk+1 are the unknowns xk+1 and yk+1. Of course, it
is easy to find pk+1 directly, if you are have a small number of equations as in
this case, using the inverse matrix.

Example 2.1.1. Let F : R2 → R2 be given in the form of equation (2.1), for

f(x, y) =
1

64
(x− 11)2 − 1

100
(y − 7)2 − 1, g(x, y) = (x− 3)2 + (y − 1)2 − 400

We wish to apply the Newton–Raphson method to solve

F (x, y) =

[
0
0

]
or equivalently the square system

f(x, y) = 0, g(x, y) = 0

The solutions are the intersection points of these two curves f(x, y) = 0 which
is a hyperbola, and g(x, y) = 0 which is a circle, and is depicted in Figure 2.1.

F[x , y] =
(x − 11)2

64
−

(y − 7)2

100
− 1;

G[x , y] = (x − 3)2 + (y − 1)2 − 400;

FGPlot = ContourPlot[{F[x, y] == 0, G[x, y] == 0}, {x, −25, 25},
{y, −25, 25}, ContourStyle→{{Red, Thickness[0.01]}, {Blue, Thick-
ness[0.01]}}, PlotRange→{{−25, 25}, {−25, 25}}, Axes→True,

22 Chapter 2. Newton–Raphson Method for Square Systems

Frame→False, AspectRatio→1]

-20 -10 10 20
x

-20

-10

10

20

y

Figure 2.1: The hyperbola f(x, y) = 0 and circle g(x, y) = 0 intersect at four
points.

It is clear from this plot of the circle and hyperbola that this system of
equations has exactly four real solutions which are the intersection points of
these two curves.

(FGMat = {{F[x, y]}, {G[x, y]}}) // MatrixForm(
−1 + 1

64 (−11 + x)2 − 1
100 (−7 + y)2

−400 + (−3 + x)2 + (−1 + y)2

)

Flatten[N[FGMat /. {{x→−2, y→20}}]]

{−0.049375,−14.}

(DFGMat = {{D[F[x, y], x], D[F[x, y], y]}, {D[G[x, y], x], D[G[x, y],
y]}}) // MatrixForm(

1
32 (−11 + x) 7−y

50

2(−3 + x) 2(−1 + y)

)

The system iterator for Newton–Raphson will be called NewtIter and it
is a function of x and y which outputs a two element list instead of a two
component column vector.

2.1 Newton–Raphson for Two Equations in Two Unknowns 23

The iterates pk are given by NewtIter[[k]] with starting guess p0 given by
NewtIter[[1]]. In this case, since we graphed the two equations, we can find
our starting guesses for the four solutions from this graph. Without a graph,
you would have to plug guesses into F (x, y) until you got a result close to the
zero column vector; graphing is so much faster if we have a machine to do it
for us. The number of iterations we will do is five.

(NewtIter = (Factor[Simplify[{{x}, {y}} − Inverse[DFGMat].
FGMat]])) // MatrixForm − 43039+137 x2−5599 y−41 x2 y+96 y2

2(611−137 x−323 y+41 x y)

−109173+10391 x−200 x2−323 y2+41 x y2

2(611−137 x−323 y+41 x y)


NewtIter /. {x→−2, y→20}{{

−11091

4810

}
,
{19517

962

}}
x0 = −2; y0 = 20;

(Seq1 = N[NestList[Flatten[NewtIter] /. {x→#[[1]] , y→#[[2]]} &,
{x0, y0}, 5], 15]) // MatrixForm

−2.00000000000000 20.0000000000000
−2.30582120582121 20.2879417879418
−2.30204186914601 20.2844076598497
−2.30204129069382 20.2844071247155
−2.30204129069380 20.2844071247155
−2.30204129069380 20.2844071247155


root1 = Seq1[[5]]

{−2.30204129069380, 20.2844071247155}

So the root of the system of equations closest to the point (−2, 20) is Seq1[[5]]
which we have called root1. We also check this root using FindRoot where
we must tell it where to look in order to get back just this single root.

FindRoot[{F[x, y] == 0, G[x, y] == 0}, {{x, −2}, {y, 20}}, Working-
Precision→15]

{x → −2.30204129069382, y → 20.2844071247155}

We will now find the other roots using Newton’s method, and will verify
our results with the FindRoot command.

24 Chapter 2. Newton–Raphson Method for Square Systems

x0 = 20; y0 = 13;

(Seq2 = N[NestList[Flatten[NewtIter] /. {x→#[[1]] , y→#[[2]]} &,
{x0, y0}, 5], 15]) // MatrixForm

20.0000000000000 13.0000000000000
19.8434903047091 11.8467220683287
19.8595722538244 11.7593086742885
19.8596601049843 11.7588039022428
19.8596601079565 11.7588038853852
19.8596601079565 11.7588038853852


root2 = Seq2[[5]]

{19.8596601079565, 11.7588038853852}

FindRoot[{F[x, y] == 0, G[x, y] == 0}, {{x, 20}, {y, 13}}, Working-
Precision→15]

{x → 19.8596601079565, y → 11.7588038853852}

x0 = 20; y0 = −4;

(Seq3 = N[NestList[Flatten[NewtIter] /. {x→#[[1]] , y→#[[2]]} &,
{x0, y0}, 5], 15]) // MatrixForm

20.0000000000000 −4.00000000000000
22.7557687636629 −3.23038620354627
22.5208918105057 −3.35966313263437
22.5190258519629 −3.35977445340876
22.5190257453235 −3.35977453011049
22.5190257453235 −3.35977453011049


root3 = Seq3[[5]]

{22.5190257453235, −3.35977453011049}

FindRoot[{F[x, y] == 0, G[x, y] == 0}, {{x, 20}, {y, −4}}, Working-
Precision→15]

{x → 22.5190257453235, y → −3.35977453011049}

x0 = −10; y0 = −16;

(Seq4 = N[NestList[Flatten[NewtIter] /. {x→#[[1]] , y→#[[2]]} &,
{x0, y0}, 5], 15]) // MatrixForm

−10.0000000000000 −16.0000000000000
−8.62568385732001 −15.3450652855788
−8.56457038737749 −15.3176346035177
−8.56444944110762 −15.3175828216490
−8.56444944063497 −15.3175828214536
−8.56444944063497 −15.3175828214536



2.1 Newton–Raphson for Two Equations in Two Unknowns 25

root4 = Seq4[[5]]

{−8.56444944063497, −15.3175828214536}

FindRoot[{F[x, y] == 0, G[x, y] == 0}, {{x, −10}, {y, −16}},
Working-Precision→15]

{x → −8.56444944063497, y → −15.3175828214536}

Now that we have all four real roots of this system, we can plot these four
points with the hyperbola and circle to see that they are the correct intersec-
tion points (see Figure 2.2).

RootPlots = Graphics[{PointSize[0.03], Black, Point[{root1, root2,
root3, root4}]}];
Show[FGPlot, RootPlots]

-20 -10 10 20
x

-20

-10

10

20

y

Figure 2.2: Intersection of the hyperbola f(x, y) = 0 and circle g(x, y) = 0 are
the four points found by Newton–Raphson.

Example 2.1.2. Let F : R2 → R2 be given in the form of equation (2.1), for

f(x, y) = 3x2y − y3 + 5x− 8, g(x, y) = 3xy2 − x3 − 4y + 2

We wish to apply Newton’s method to solve

F (x, y) =

[
0
0

]

26 Chapter 2. Newton–Raphson Method for Square Systems

or equivalently the square system

f(x, y) = 0, g(x, y) = 0

The real solutions are the real intersection points of these two curves.

F[x , y] = 3 x2 y − y3 + 5x − 8;

G[x , y] = 3 x y2 − x3 − 4 y + 2;

FGPlot = ContourPlot[{F[x, y] == 0, G[x, y] == 0}, {x, −25, 25},
{y, −25, 25}, ContourStyle→{{Red, Thickness[0.01]}, {Blue, Thick-
ness[0.01]}}, PlotRange→{{−25, 25}, {−25, 25}}, Axes→True,
Frame→False, AspectRatio→1]

-10 -5 5 10
x

-10

-5

5

10

y

Figure 2.3: Intersection of the level curves f(x, y) = 0 and g(x, y) = 0.

It is clear from Figure 2.3 that this system of equations has exactly three
real solutions which are the intersection points of these two curves. How many
total real and complex solutions are there to this system?

(FGMat = {{F[x, y]}, {G[x, y]}}) // MatrixForm(
−8 + 5 x + 3 x2 y− y3

2− x3 − 4 y + 3 x y2

)

Flatten[N[FGMat /. {x→−2 + I, y→5 − 3 I}]]

{1.+116. i,−22.+229. i}

2.1 Newton–Raphson for Two Equations in Two Unknowns 27

(DFGMat = {{D[F[x, y], x], D[F[x, y], y]}, {D[G[x, y], x], D[G[x, y],
y]}}) // MatrixForm(

5 + 6 x y 3 x2 − 3 y2

−3 x2 + 3y2 −4 + 6 x y

)

(NewtIter = (Factor[Simplify[{{x}, {y}} − Inverse[DFGMat].
FGMat]])) // MatrixForm 2 (−16+3 x2+3x5+24 x y−12 x2 y−3 y2+6x3 y2+4y3+3x y4)

−20+9 x4+6x y+18 x2 y2+9y4

2 (−5+12 x2−5 x3−6 x y+3 x4 y−12 y2+15 x y2+6x2 y3+3y5)
−20+9 x4+6x y+18 x2 y2+9y4


NewtIter /. {x →−0.25 + 0.433 I, y→0.433 - 0.75 I}

{{1.06721−0.313821 i}, {−0.0545072−0.4715 i}}

x0 = 7. − 10. I; y0 = −5. + 3. I;

(Seq1 = SetPrecision[NestList[Flatten[NewtIter] /. {x→#[[1]] , y→
#[[2]]} &, {x0, y0}, 12], 12]) // MatrixForm

7.00000000000− 10.00000000000 i −5.00000000000 + 3.00000000000 i

4.71607628904− 6.60071522707 i −3.38297490293 + 2.01217959092 i

3.22416973697− 4.30864937934 i −2.32662679354 + 1.37263495340 i

2.28314611858− 2.75413325299 i −1.64393687179 + 0.99073595274 i

1.74285971034− 1.71614567645 i −1.17852503220 + 0.82200286336 i

1.46529550929− 1.09376769351 i −0.770937911022 + 0.788281456980 i

1.29241826622− 0.76054701886 i −0.399170553164 + 0.748552340339 i

1.204529252433− 0.582511953350 i −0.145124036298 + 0.681731736303 i

1.196760917973− 0.515657328424 i −0.052891607834 + 0.618883269338 i

1.202567804087− 0.509474855682 i −0.049752878796 + 0.603573708249 i

1.202681504457− 0.509586110927 i −0.050028196483 + 0.603512420464 i

1.202681462289− 0.509586075656 i −0.050028104126 + 0.603512445782 i

1.202681462289− 0.509586075656 i −0.050028104126 + 0.603512445782 i


root1 = Seq1[[12]];

FGMat /. {x→root1[[1]], y→root1[[2]]}

{{0.×10−11+0.×10−11
i}, {0.×10−11+0.×10−11

i}}

This last example indicates that we have at least one complex solution to
this real system of equations. We conclude this section with a few remarks.

28 Chapter 2. Newton–Raphson Method for Square Systems

(1) It should be clear from the above examples that even the system of
equations version of the Newton–Raphson method is very fast! It also works to
generate complex solutions as long as the starting value is also complex when
your equations are real. Redo the above example to see if you can find another
complex solution. Is the complex conjugate of a solution in the last example
also a solution?

(2) Also, rewrite the code above so that no inverse of the Jacobian is needed
since this is impractical for large matrices and systems of equations.

(3) Now try using the Newton–Raphson method to solve the system

(x− 4)2 + (y − 9)2 = 25, (x− 3)2 + (y − 7)2 = 36

for both solutions. The two real solutions here are the intersection points of
these two circles. Are there any complex solutions?

2.2 Newton–Raphson for Three Equations in
Three Unknowns

In this section we will look at an example of using the system version of the
Newton–Raphson method to solve a 3 × 3 system of equations which are all
spheres in space.

Example 2.2.1. Our three spheres have the equations

(x− 5)2 + (y − 9)2 + (z − 4)2 = 49

(x− 2)2 + (y − 7)2 + (z − 13)2 = 100

(x− 6)2 + (y − 11)2 + (z − 10)2 = 64

(2.9)

Let’s now plot all three spheres and see if we can find any real intersection
points of all three spheres (see Figure 2.4).

F[x , y , z] = (x − 5)2 + (y − 9)2 + (z − 4)2 − 49;

G[x , y , z]= (x − 2)2 + (y − 7)2 + (z − 13)2 − 100;

H[x , y , z]= (x − 6)2 + (y − 11)2 + (z − 10)2 − 64;

FGHPlot = ContourPlot3D[{F[x, y, z] == 0, G[x, y, z] == 0, H[x, y,
z] == 0}, {x,−10,25}, {y,−10,25}, {z,−10,25}, ContourStyle→{{Red,
Thickness[0.01]}, {Blue, Thickness[0.01]}, {Yellow, Thickness[0.01]}},
PlotRange→{{−10, 25}, {−10, 25}, {−10, 25}}, Axes→True, Aspect-

2.1 Newton–Raphson for Three Equations in Three Unknowns 29

Ratio→1, Mesh→None, AxesLabel→{''x'', ''y'', ''z''}]

-10
0
10

20

x

-10
0

10 20

y

-10

0

10

20

z

Figure 2.4: Intersection of three spheres.

It is clear from this plot of the three spheres that this system of equations
has exactly two real solutions which are the intersection points of these three
spheres near the points (−2, 14, 6) and (8, 5, 7).

We now use the Newton–Raphson system method to solve our problem
where F : R3 → R3 be given by

F (x, y, z) =

 f(x, y, z)
g(x, y, z)
h(x, y, z)

 (2.10)

for

f(x, y, z) = (x− 5)2 + (y − 9)2 + (z − 4)2 − 49

g(x, y, z) = (x− 2)2 + (y − 7)2 + (z − 13)2 − 100

h(x, y, z) = (x− 6)2 + (y − 11)2 + (z − 10)2 − 64

(2.11)

We wish to apply the Newton–Raphson method to solve

F (x, y, z) =

 0
0
0



30 Chapter 2. Newton–Raphson Method for Square Systems

(FGHMat = {{F[x, y, z]}, {G[x, y, z]}, {H[x, y, z]}}) // MatrixForm −49 + (−5 + x)2 + (−9 + y)2 + (−4 + z)2

−100 + (−2 + x)2 + (−7 + y)2 + (−13 + z)2

−64 + (−6 + x)2 + (−11 + y)2 + (−10 + z)2


Flatten[N[FGHMat /. {{x→−2., y→14., z→6.}}]]

{29., 14., 25.}

(DFGHMat = {{D[F[x, y, z], x], D[F[x, y, z], y], D[F[x, y, z], z]},
{D[G[x, y, z], x], D[G[x, y, z], y], D[G[x, y, z], z]}, {D[H[x, y, z], x],
D[H[x, y, z], y], D[H[x, y, z], z]}}) // MatrixForm 2(−5 + x) 2(−9 + y) 2(−4 + z)

2(−2 + x) 2(−7 + y) 2(−13 + z)

2(−6 + x) 2(−11 + y) 2(−10 + z)


The system iterator for Newton–Raphson will be called NewtIter and it

is a function of x, y, and z which outputs a three element column vector. The
pk iterates are stored in the variable Seq1, with starting guess p0 given by
Seq1[[1]]. In this case, since we graphed the three equations, we can find our
starting guesses for the two solutions from this graph. Without a graph, you
would have to plug guesses into F (x, y, z) until you got a result close to the
zero column vector; graphing is so much faster. The number of iterations we
will do below is five, at which time the root has been located to twelve decimal
place accuracy.

(NewtIter = (Factor[Simplify[{{x}, {y}, {z}} − Inverse[DFGHMat].

FGHMat]])) // MatrixForm
3118+15 x2−393 y+15 y2−169 z+15 z2

77+30 x−27 y+4 z

− 3595−786 x+27 x2+27 y2−409 z+27 z2

2 (77+30 x−27 y+4 z)

1699+338 x+4 x2−409 y+4 y2+4 z2

2 (77+30 x−27 y+4 z)


NewtIter /. {x→−2., y→14., z→6.}

{{−0.421365}, {13.4792}, {5.57715}}

x0 = −2.; y0 = 14.; z0 = 6.;

(Seq1 = SetPrecision[NestList[Flatten[NewtIter] /.{x→#[[1]] , y→#

2.1 Newton–Raphson for Three Equations in Three Unknowns 31

[[2]], z→#[[3]]} &, {x0, y0, z0}, 5], 12]) // MatrixForm
−2.00000000000 14.0000000000 6.00000000000
−0.421364985163 13.4792284866 5.57715133531
−0.262201908681 13.3359817178 5.59837307884
−0.259615579897 13.3336540219 5.59871792268
−0.259614896621 13.3336534070 5.59871801378
−0.259614896621 13.3336534070 5.59871801378


root1 = Seq1[[5]]

{−0.259614896621, 13.3336534070, 5.59871801378}

FGHMat /. {x→root1[[1]], y→root1[[2]], z→root1[[3]]}{{
0.×10−10

}
,
{
0.×10−10

}
,
{
0.×10−10

}}
FindRoot[{F[x, y, z] == 0, G[x, y, z] == 0, H[x, y, z] == 0}, {{x,
−2.}, {y, 14.}, {z, 6.}}, WorkingPrecision→15]

{x → −0.259614896620942, y → 13.3336534069588, z → 5.59871801378387}

So the root of the system of equations closest to the point (−2, 14, 6) is
Seq1[[5]] which we have called root1. We also checked this root in two ways
by first plugging it back in the function F to see if we get very close to zero
(which we do) and then by using FindRoot where we must tell it where to
look in order to get back just this specific root.

x0 = 8.; y0 = 5.; z0 = 7.;

(Seq2 = SetPrecision[NestList[Flatten[NewtIter] /.{x→#[[1]] , y→#
[[2]], z→#[[3]]} &, {x0, y0, z0}, 5], 12]) // MatrixForm

8.00000000000 5.00000000000 7.00000000000
9.71428571429 4.35714285714 6.92857142857
9.53347012054 4.51987689151 6.90446268274
9.53013275167 4.52288052350 6.90401770022
9.53013161395 4.52288154745 6.90401754853
9.53013161395 4.52288154745 6.90401754853


root2 = Seq2[[5]]

{9.53013161395, 4.52288154745, 6.90401754853}

FGHMat /. {x→root2[[1]], y→root2[[2]], z→root2[[3]]}{{
0.×10−10

}
,
{
0.×10−10

}
,
{
0.×10−10

}}

32 Chapter 2. Newton–Raphson Method for Square Systems

FindRoot[{F[x, y, z] == 0, G[x, y, z] == 0, H[x, y, z] == 0}, {{x,
8.}, {y, 5.}, {z, 7.}}, WorkingPrecision→15]

{x → 9.53013161394617, y → 4.52288154744845, z → 6.90401754852616}

Now we will start with a complex guess to see if our system might have any
complex solutions.

x0 = 15. − 20. I; y0 = −14. + 8. I; z0 = −50. − 9. I;

Seq3 = Chop[SetPrecision[NestList[Flatten[NewtIter] /.{x→#[[1]] ,
y→#[[2]], z→#[[3]]} &, {x0, y0, z0},11], 12], 10−15];

Part[Seq3[[All, 1]]] // MatrixForm



15.0000000000− 20.0000000000 i

30.7230149911 + 36.4439840743 i

17.8347214116 + 18.0046438095 i

11.5522658813 + 8.5695435957 i

8.77700411428 + 3.43829707054 i

8.41850568458 + 0.29760979388 i

9.67397046894− 0.09876135064 i

9.53127161528− 0.00279697097 i

9.53013094812− 6.5163× 10−7
i

9.53013161395 + 0.× 10−14
i

9.53013161395
9.53013161395


Part[Seq3[[All, 2]]] // MatrixForm



−14.0000000000 + 8.0000000000 i

−14.5507134920− 32.7995856669 i

−2.9512492704− 16.2041794286 i

2.70296070683− 7.71258923612 i

5.20069629715− 3.09446736348 i

5.52334488388− 0.26784881449 i

4.39342657796 + 0.08888521557 i

4.52185554624 + 0.00251727388 i

4.52288214669 + 5.8647× 10−7
i

4.52288154745 + 0.× 10−14
i

4.52288154745
4.52288154745



2.1 Newton–Raphson for Three Equations in Three Unknowns 33

Part[Seq3[[All, 3]]] // MatrixForm

−50.0000000000− 9.0000000000 i

9.72973533214 + 4.85919787657 i

8.01129618821 + 2.40061917460 i

7.17363545084 + 1.14260581276 i

6.80360054857 + 0.45843960941 i

6.75580075794 + 0.03968130585 i

6.92319606253− 0.01316818008 i

6.90416954870− 0.00037292946 i

6.90401745975− 8.688× 10−8
i

6.90401754853 + 0.× 10−14
i

6.90401754853
6.90401754853


With this complex starting value we have gotten back to the previous real

solution in root2 since all of the imaginary parts of the solution above are all
very close to zero. You should try more complex starting guesses and see if
they all give these two real solutions or not. Do you believe that this system
of equations has only two real solutions and no complex ones?

