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Chapter 2

Linear Systems of

Equations and Matrices

2.1 Linear Systems of Equations

1. Give conditions on two lines such that their intersection results in a simul-
taneous solution that is (a) of dimension 0, (b) of dimension 1, (c) is empty.

(a) To be of dimension 0, the lines must not be parallel.

(b) To be of dimension 1, the two lines must be the same.

(c) To be of dimension 0, the lines must be parallel and distinct.

2. Give conditions on a line and a plane such that the intersection of these two
geometric objects results in a simultaneous solution that is (a) of dimension 0,
(b) of dimension 1, (c) is empty.

(a) To have an intersection of dimension 0, the line does not lie in the plane,
or in a plane parallel to it.

(b) To have an intersection of dimension 1, the line must lie in the plane.

(c) To have an empty intersection, the line must lie in a plane parallel and
distinct to the given plane.

3. Give conditions on two planes such that their intersection results in a si-
multaneous solution that is (a) of dimension 1, (b) of dimension 2, (c) is empty.
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2 Chapter 2. Linear Systems of Equations and Matrices

(a) Planes are not parallel and are distinct.

(b) Planes are the same.

(c) Planes are parallel and distinct.

4. Determine the dimension of the solutions to problem 2 in the Maple Prob-
lems section. You do not have to solve the systems by hand.

a) 0 b) 0 c) empty d) 1

e) 0 f) empty g) 0 h) 1

i) empty

5. Solve by hand, for all of its intersection points (if any), each of the following
linear systems of two lines:

(a) 3x− 2y = 9 (b) x+ 5y = 9 (c) 7x+ 14y = −21
5x+ 4y = −13 −2x− 10y = −2 x+ 2y = −3

{

x = 5
11 , y = − 42

11

}

no solution {x = −2y − 3, y = y}

6. Solve by hand, for all intersection points (if any), each of the following linear
systems of three planes:

(a) 3x− 2y + z = 9 (b) x− 6y + 3z = 9
5x+ 4y − 7z = −13 −2x+ 4y − 7z = −2
x− y − z = 2 −x− 2y − 4z = 15

{

x = 20
19 , y = − 43

19 , z = 25
19

}

no solution

(c) −x+ 3y + 8z = 9
5x+ 4y − 3z = −2
6x+ y − 11z = −11

{

x = − 42
19 + 41

19 z, y = 43
19 − 37

19 z, z = z
}

7. Show that ax+ by = c and dx+ ey = f , for a through f real constants, are
two parallel lines exactly when ae − bd = 0. As a consequence of this, these
two lines intersect with dimension 0 exactly when ae− bd 6= 0.
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Solving this system for x and y gives
{

x =
ce− bf

ae− db
, y =

af − dc

ae− db

}

.

The above solution corresponds to all possible intersection points. Two lines
have no intersection points if they are parallel and distinct, which corresponds
to the above solution being empty. This occurs only when ae − db = 0. If
ae − db 6= 0, there there exists only one point in the above solution set, hence
the two lines intersect with dimension 0.

8. Show that ax + by = c and dx + ey = f , for a through f real con-
stants, are two parallel lines exactly when there is some real number k where
dx+ ey = k(ax+ by).

If the two lines are parallel, then by problem 7, we know that ae = db. Thus,
if we assume that e 6= 0, then we have ax+ by = c implies that aex+ bey = ce.
But adb, and therefore aex+bey = ce is equivalent to dbx+bey = ce. Factoring

and dividing by b gives dx + ey =
ce

b
. Putting this all together, gives

ax+ by =
1

e
(aex+ bey)

=
1

e
(dbx+ bey)

=
b

e
(dx+ ey).

Therefore, setting k =
e

b
, gives dx+ey = k(ax+by). If e = 0, then the problem

becomes even easier,as this gives dx = f , a vertical line. We leave the details
to the interested reader.

Now if we assume that dx+ ey = k(ax+ by), then the two lines become:

ax+ by = c

ax+ by =
f

k
.

These two lines are clearly parallel, since they have the same slope. Further-
more, the two lines are identical only if f = ck.

9. Show that ax + by = c and dx + ey = f , for a through f real constants,

has the single intersection point with coordinates

(

ce − bf

ae− bd
,
af − cd

ae− bd

)

, when

ae− bd 6= 0.
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Multiplying the first equation by d and the second by a gives

adx+ bdy = cd

adx+ aey = af,

and then subtracting the first equation from the second yields

(ae− bd)y = af − cd −→ y =
af − cd

ae− bd
.

In a similar fashion, we take the original two equations, multiply the first by e,

the second by b and apply the same process to get x =
ce− bf

ae− bd
. Therefore, un-

der the assumption that ae−bd 6= 0, we get the unique point

(

ce− bf

ae− bd
,
af − cd

ae− bd

)

as the intersection point of the two lines.

10. Show that ax + by = c and dx + ey = f , for a through f real constants,
are two perpendicular lines exactly when ad+ be = 0.

First we will assume that ad 6= 0 and be 6= 0. Then solving for y in each of
the equations gives

y = −a

b
x+

c

b

y = −d

e
x+

f

e

If the two lines are perpendicular, then their slopes must be negative recipro-
cals, thus

−a

b
= − 1

−d

e

=
e

d
−→ ad+ be = 0.

These steps can be reversed as well.
Now if ad = 0, then be = 0 as well. If a = 0, then b 6= 0, otherwise, we would

have the equation 0 = c. This forces e = 0 and d 6= 0, giving the equations
by = c and dx = f . A similar arguments works for ax = c and ey = f . Each of
these pairs of lines are also perpendicular.

11. The definition of parallel planes is that they are either identical or they do
not intersect. Show that ax+ by + cz = d and ax+ by + cz = e, for a through
e real constants, are two parallel planes.

Subtracting the two planes from each other gives the equation 0 = d − e.
This equation has no solution if d 6= e, therefore the planes are parallel and
distinct. Any triplet (x, y, z) will satisfy the equation if d = e, since the result-
ing equation is 0 = 0. This, of course, is the case where both planes are the
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same.

12. Show that the two planes ax + by + cz = d and ex + fy + gz = h, for a
through h real constants, have the line of intersection given by

{

x =
bg − cf

af − be
z +

df − bh

af − be
, y =

ce− ag

af − be
z +

ah− ed

af − be
, z

}

for the independent variable z when af − be 6= 0.

Just as in problem 9, we multiply by the appropriate constants to remove
a variable. We will first remove x by multiplying the first equation by e, the
second by a and taking their difference. This gives

(eb− af)y + (ce− ag)z = ed− ah −→ y =
ce− ag

af − be
z +

ah− ed

af − be
.

To solve for x in terms of z, we need to get rid of the y’s. To do this, we
multiply equation 1 by f , equation 2 by b and take the difference:

(af − eb)x+ (fc− bg)z = fd− bh −→ x =
bg − cf

af − be
z +

df − bh

af − be
.

Since z is arbitrary we can express the line of intersection as the set of all points
of the form:

{

x =
bg − cf

af − be
z +

df − bh

af − be
, y =

ce− ag

af − be
z +

ah− ed

af − be
, z

}

.

2.2 Augmented Matrix of a Linear System and

Row Operations

1. Given an augmented matrix, describe how to determine if it is in the sim-
plest form possible for finding the solution to the system of equations from
which the original augmented matrix was constructed.

In simplest form, every row of the matrix is required to be either all zeros
or have a leading 1 in the row preceded by all zeros in its row. As you go down
the rows of the matrix, the leading 1’s of the matrix should move left to right
with no two of them occurring in the same column. Furthermore, any row of all
zeroes must be placed at the bottom of the simplest form matrix. As well, each
column which contains a leading 1 must have all other entries of the column to
be 0.
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2. Given an augmented matrix, describe how to determine upon inspection
whether or not the system of linear equations it represents has no solution, or
an infinite number of solutions.

If the system has no solution, the simplest form matrix should have a row
in which all entries are zero a except for the entry in the last column, which is
nonzero. This will result in an equation of the form 0 = a, which is a contra-
diction for a 6= 0.

If the system has an infinite number of solutions, then the simplest form
matrix must have at least one row where there is a leading followed by at least
two columns which are nonzero in the same row.

3. Explain how to find the equation of a line through two points (x1, y1), and
(x2, y2) and a plane through three points (x1, y1, z1), (x2, y2, z2), and (x3, y3, z3)
using linear systems.

A line in standard form is given by ax+ by = c. If the points (x1, y1), and
(x2, y2) lie on the line, then we have

ax1 + by1 = c

ax2 + by2 = c.

This gives two equations and 3 unknowns, a, b and c. You can solve for a and
b in terms of c to get an answer. Notice the line is unique in the sense that
ax+ by = c is the same as d(ax+ by) = dc, for any nonzero constant d.

In a similar fashion, a plane is defined by the equation ax + by + cz = d,
and we can solve the system of three equations

ax1 + by1 + cz1 = d

ax2 + by2 + cz2 = d,

for a, b, and c in terms of d.

4. Convert each of the following systems to matrix form and determine to what
set the resulting matrix belongs: Rn×m or Cn×m for specific values of m and
n.

(a)
3x+ 4y = 4
4x+ 3y = 8

−→
[

3 4 4
4 3 8

]

∈ R2×3

(b)
x+ 4iy = 1
x+ y = i

−→





1 4i 1
1 1 i
−4 1 −4i



 ∈ C3×3
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(c)
x+ 4y = 1
x+ 2y = 1

−4x+ y = −1
−→





1 4 1
1 2 1
−4 1 −1



 ∈ R3×3

(d)
3x− 5y + 6z = 1
4x+ 3y − 2z = 2

−→
[

3 −5 6 1
4 3 −2 2

]

∈ R2×4

(e)
3ix− 5y + 6z = 1
4x+ 3iy − 2z = 2
x− y + 2iz = −i

−→





3i −5 6 1
4 3i −2 2
1 −1 2i −i



 ∈ C3×4

(f)
x+ y + z = 1
x− y + z = 1
x− 2y + z = 2

−→





1 1 1 1
1 −1 1 1
1 −2 1 2



 ∈ R3×4

(g)
x+ y + 3z = 1
x− 2y + z = 3
x− 2y + z = −2

−→





1 1 3 1
1 −2 1 3
1 −2 1 −2



 ∈ R3×4

(h)
3x− 5y + 6z + 6t = 1
3x− 5y + 6z + 6t = 1
x− y + 2z + 2t = −1

−→





3 −5 6 6 1
4 3 −2 −3 2
1 −1 2 2 −1



 ∈ R3×5

(i)

x+ y + z + t = i
x− y + z + t = 1
x− 2y + z + t = 2
x− 2y + z + 2t = 2

−→









1 1 1 1 i
1 −1 1 1 1
1 −2 1 1 2
1 −2 1 2 2









∈ C4×5

5. Convert the following systems to matrix form and then reduce each to its
final augmented form using the row operations discussed in this section. Ex-
plain each step and show the modified augmented matrix at each step.

(a) 2x− 3y = −5 (b) x+ y + z = 6
3x+ 7y = 4 −x+ y − z = −2

x+ 2y − z = 2

augmented matrix: augmented matrix:
[

2 −3 −5
3 7 4

]





1 1 1 6
−1 1 −1 −2
1 2 −1 2




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final augmented matrix: final augmented matrix:
[

1 0 −1
0 1 1

]





1 0 0 1
0 1 0 2
0 0 1 3





(c) 3ix− 4y = −26− 21i (d) 2x+ 3y − 4z = −5
7x+ 5iy = −36 + 39i 4x− 3y + 9z = 13

−6x+ 9y + z = −8

augmented matrix: augmented matrix:
[

3i −4 −26− 21i
7 5i −36 + 39i

]





2 3 −4 −5
4 −3 9 13
−6 9 1 −8





final augmented matrix: final augmented matrix:

[

1 0 −3 + 2i
0 1 5 + 3i

]









1 0 0 1
2

0 1 0 − 2
3

0 0 1 1









(e) 10x+ 15y − 7z = −35 (f) x− y + z = 0

−4

3
x+ 5y − 14z = −1 x+ 3y − 2z = 4− 2i

35x− 35y + 7z = −96 −3x+ y − 2iz = 2 + 4i

augmented matrix: augmented matrix:








10 15 −7 −35

− 4
3 5 −14 −1

35 −35 7 −96













1 −1 1 0
1 3 −2 4− 2i
−3 1 −2i 2 + 4i





final augmented matrix: final augmented matrix:










1 0 0 −3

0 1 0 − 1
5

0 0 1 2
7















1 0 0 1− i
0 1 0 1 + i
0 0 1 2i





6. Using the final augmented matrices from the previous exercise, express the
solutions to the original systems in set notation using the variables defined.

(a) {x = −1, y = 1} (b) {x = 1, y = 2, z = 3}

(c) {x = −3 + 2i, y = 5 + 3i} (d)
{

x = 1
2 , y = − 2

3 , z = 1
}

(e)
{

x = −3, y = − 1
5 , z = 2

7

}

(f) {x = 1− i, y = 1 + i, z = 2i}

7. If the following augmented matrices represented a system of equations now
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in reduced form, express the solutions in set notation.

(a)





1 0 0 3
0 1 0 −6
0 0 1 2



 (b)





1 0 0 3 1
0 1 0 −6 0
0 0 1 2 −2





{x = 3, y = −6, z = 2} {w = 1− 3z, x = 6z, y = −2− 2z}

c)





1 0 0 3
0 1 0 −6
0 0 0 1





no solution

2.3 Some Matrix Arithmetic

1. Consider the following matrices:

A =

[

1 3
−2 1

]

B =

[

5 −3
2 7

]

C =

[

9 −6
−8 2

]

D =





1 −9 2
−4 6 2
−1 3 0



 E =





4 −9 2
6 −1 3
−7 2 5



 F =





6 −3 9
−3 2 −8
5 3 4





Perform the following matrix operations:

(a) A− 2B =

[

−9 9
−6 −13

]

(b) 5A− 3C =

[

−22 33
14 −1

]

(c) 2A+ 3B − 4C =

[

−19 21
34 15

]

(d) 3(A−B + C) =

[

15 0
−36 −12

]

(e) 2B + 5C =

[

55 −36
−36 24

]

(f) D − 3F + 4E =





−1 −36 −17
29 −4 38
−44 2 8




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(g) 6D + 3F =





24 −63 39
−33 42 −12
9 27 12





(h) 2E + 3F =





26 −27 31
3 4 −18
1 13 22





(i) 6D − 4E + 2F =





2 −24 22
−54 44 −16
32 16 −12





(j) 2(D − 3E) + 5F =





8 21 37
−59 28 −54
65 9 −10





(k) B − 4C + 3A =

[

−28 30
28 2

]

(l) 2(6D − 5F ) =





−48 −78 −66
−18 52 104
−62 6 −40





2. Consider the following matrices:

A =

[

1 −4
−2 2

]

B =

[

1 −7 8
−2 2 3

]

C =





4 −1
−2 9
6 −2





D =





1 −4 2
0 2 5
−1 3 5



 E =









1 −7 8
−2 2 3
−2 1 6
−2 8 −7









F =









4 −1
−2 9
8 −2
6 −3









Determine which of the following matrix multiplications can be performed:

(a) AA - yes (b) AB - yes (c) AC - no (d) CA - yes e) BB - no

(f) FD - no (g) DA - no (h) BC - yes (i) CF - no j) DB - no

3. Find all 12 possible combinations of matrices from problem 2 that will allow
a matrix multiplication to be performed.

The following matrix multiplications, using the matrices A through F de-
fined above, can be performed:

AA, AB, BC, BD, CA, CB, DC, DD, EC, ED, FA, FB

4. Find a value of a for which the following two matrices satisfy AB = BA:
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A =

[

a 3
−2 1

]

, B =

[

1 −3
2 −2

]

First we perform the multiplications AB and BA:

AB =

[

a+ 6 −3a− 6
0 4

]

, BA =

[

a+ 6 0
2a+ 4 4

]

.

These two matrices are equal if and only if each of their entries are equal, this
gives us the system of equations:

a+ 6 = a+ 6, −3a− 6 = 0, 0 = 2a+ 4, 4 = 4.

Notice that the first and last equations always hold, this reduces our system
two two equations, but these are multiples of each other as well. The solution
to either the second or third equations is a = −2.

5. Perform the following matrix multiplications:

(a)

[

1 0
1 −2

] [

−2 −4
5 6

]

=

[

−2 −4
−12 −16

]

(b)

[

1 −2 3
8 −1 −7

]





−2 4
7 2
8 −5



 =

[

8 −15
−79 65

]

(c)
[

2 −1 4
]





−3
1
−5



 =
[

−27
]

(d)





−2 2
5 2
1 −1





[

−1 0 8
−4 5 9

]

=





−6 10 2
−13 10 58
3 −5 −1





(e)









2 −1
3 0
−8 7
−4 2









[

−2 0 −1
5 3 5

]

=









−9 −3 −7
−6 0 −3
51 21 43
18 6 14









(f)





−2 3 1
−7 −1 4
3 8 1









1 −3
2 4
0 1



 =





4 19
−9 21
19 24





6. Write the following systems of equations in the matrix form AX = B:
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(a)
2x− 3y = 7
4x+ 5y = 2

[

2 −3
4 5

] [

x
y

]

=

[

7
2

]

(b)
23x− 6y + 4z = 2
14x+ 6y − 5z = 4
−5x+ 4y = −1





23 −6 4
14 6 −5
−5 4 0









x
y
z



 =





2
4
−1





(c)
2w + 4y − 5z = 6

−w + x− 4y + 3z = 7
8w − 2x− 7z = 9





2 0 4 −5
−1 1 −4 3
8 −2 0 −7













w
x
y
z









=





6
7
9





(d)

w − 5x+ 3y + 7z = −8
−9w + 3x+ 4y − 6z = 3
5w − 8x+ y − 5z = 3

6w + x+ 9y + 13z = −16









1 −5 3 7
−9 3 4 −6
5 −8 1 −5
6 1 9 13

















w
x
y
z









=









8
3
3

−16









7. Consider the following three matrices:

A =





2 0 4
5 1 −2
1 6 −7



 B =





−1 1 2
−6 4 1
7 0 2



 C =





4 −2 9
5 −8 0
2 1 −1





Show the following hold (assuming c ∈ R).

(a) A(BC) = (AB)C

A(BC) =





2 0 4
5 1 −2
1 6 −7













5 −4 −11
−2 −19 −55
32 −12 61









=





138 −56 222
−41 −15 −232
−231 −34 −768





=









26 2 12
−25 9 7
−86 25 −6













4 −2 9
5 −8 0
2 1 −1





= (AB)C
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(b) A(B + C) = AB +AC

A(B + C) =





2 0 4
5 1 −2
1 6 −7













3 −1 11
−1 −4 1
9 1 1









=





42 2 26
−4 −11 54
−66 −32 10





=





26 2 12
−25 9 7
−86 25 −6



+





16 0 14
21 −20 47
20 −57 16





= AB +AC

(c) (A+B)C = AC +BC

(A+B)C =









1 1 6
−1 5 −1
8 6 −5













4 −2 9
5 −8 0
2 1 −1





=





21 −4 3
19 −39 −8
52 −69 77





=





16 0 14
21 −20 47
20 −57 16



+





5 −4 −11
−2 −19 −55
32 −12 61





= AC +BC

(d) c(AB) = (cA)B

c(AB) = c





26 2 12
−25 9 7
−86 25 −6





=





26 c 2 c 12 c
−25 c 9 c 7 c
−86 c 25 c −6 c





=









2 c 0 4 c
5 c 1 c −2 c
1 c 6 c −7 c













−1 1 2
−6 4 1
7 0 2





= (cA)B
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(e) A(cB) = (Ac)B

A(cB) =





2 0 4
5 1 −2
1 6 −7













−1 c 1 c 2 c
−6 c 4 c 1 c
7 c 0 2 c









=





26 c 2 c 12 c
−25 c 9 c 7 c
−86 c 25 c −6 c





=









2 c 0 4 c
5 c 1 c −2 c
1 c 6 c −7 c













−1 1 2
−6 4 1
7 0 2





= (Ac)B

(f) (AB)c = A(Bc)

(AB)c =





26 2 12
−25 9 7
−86 25 −6



 c

=





26 c 2 c 12 c
−25 c 9 c 7 c
−86 c 25 c −6 c





=





2 0 4
5 1 −2
1 6 −7













−1 c 1 c 2 c
−6 c 4 c 1 c
7 c 0 2 c









= A(Bc)

8. For part (a) of problem 7, what are the general dimensions of A, B, and
C such that one can perform the matrix multiplication? Do the same for the
matrices of parts (b) and (c).

(a) The most general dimensions are A : k ×m, B : m× n and C : n×m,
for k, m and n arbitrary positive integers.

(b) The only difference between this part and part (a) is that B and C must
be of the same dimension, thus A : k ×m, B : m× n and C : m× n.

(c) Similar to part (b) the solution here is A and B must be of the same
dimension, thus A : m× n, B : m× n and C : n× k.

9. Let c be a scalar and A be any 2 × 2 matrix, show that cA =

[

c 0
0 c

]

A.

Is a similar statement true for any size square matrix A? Generalize this to
any size matrix A so that general scalar multiplication is turned into matrix
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multiplication by a diagonal matrix?

To show that cA =

[

c 0
0 c

]

A, we simply recognize the fact that

[

c 0
0 c

]

=

cI2, for I2 the 2× 2 identity matrix. Therefore,

cA = c(I2A)

= (cI2)A

=

[

c 0
0 c

]

A.

To generalize this process, we simply notice that if A ∈ Rn×m, then InA =
A, for In the n × n identity matrix. Therefore, applying the same process as
above, we get

cA = c(InA)

= (cIn)A

=













c 0 · · · 0

0 c
...

...
. . . 0

0 · · · 0 c













A.

10. Let A, B, C, and D be four 2 × 2 matrices. Let K =

[

A 0
0 B

]

and

L =

[

C 0
0 D

]

be two block diagonal 4× 4 matrices with A, B, C, and D on

their diagonals, the 0’s in these two matrices are the zero 2× 2 matrices. Show

that KL =

[

AC 0
0 BD

]

and Kn =

[

An 0
0 Bn

]

for any positive integer n.

Generalize this problem where there is no restriction on the sizes of A, B, C,
and D as long as they are square matrices, although you may want some of
their sizes to be the same. Will this work for larger size block diagonal matrices?

First, we compute the upper left 2× 2 block of the matrix KL. Notice that

(KL)i,j =

4
∑

k=1

Ki,kLk,j ,

but Ki,k = 0 for 1 ≤ i ≤ 2 and 3 ≤ k ≤ 4, and similarly Kk,j = 0 for 1 ≤ j ≤ 2
and 3 ≤ k ≤ 4. Therefore, we have

(KL)i,j =

2
∑

k=1

Ki,kLk,j ,
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for 1 ≤ i, j ≤ 2. But this is the definition of ACi,j . A similar argument holds
for the lower right 2× 2 block.

Now, the off diagonal 2× 2 blocks are zero for exactly the opposite reason.
For instance, consider the upper right 2 × 2 block, which corresponds to 1 ≤
i ≤ 2 and 3 ≤ j ≤ 4:

(KL)i,j =

4
∑

k=1

Ki,kLk,j

=

2
∑

k=1

Ki,kLk,j +

4
∑

k=3

Ki,kLk,j

=

2
∑

k=1

Ki,k · 0 +
4

∑

k=3

0 · Lk,j

= 0.

Upon setting L = K, we automatically arrive at K2 =

[

A2 0
0 B2

]

, which

can therefore be generalized to Kn =

[

An 0
0 Bn

]

for any positive integer n.

This process can be generalized to non-square blocks as long as the di-
mensions of the blocks of the first matrix are equal to the dimensions of the
transpose of the second matrix, so that zero blocks still occur off the diagonal.

11. Define the set M as follows:

M =

{[

a b
−b a

]∣

∣

∣

∣

a, b ∈ R

}

Show that the following are true.

(a) For any two K,L ∈ M, KL = LK, that is, matrix multiplication in M

is commutative.

Setting K =

[

a b
−b a

]

and L =

[

c d
−d c

]

, it is easy to compute that

KL =

[

ac− bd ad+ bc
−bc− ad ac− bd

]

= LK.

(b) Show that

[

a b
−b a

] [

a −b
b a

]

=

[

a2 + b2 0
0 a2 + b2

]

= (a2 + b2)I2,
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where I2 is the 2× 2 identity matrix.

This is a straightforward computation involving two 2× 2 matrices.

(c) Show that

[

0 1
−1 0

]2

=

[

−1 0
0 −1

]

= −I2

Hence

[

0 1
−1 0

]

is the square root of −I2.

[

0 1
−1 0

]2

=

[

0 1
−1 0

] [

0 1
−1 0

]

=

[

−1 0
0 −1

]

= −I2

(d) Do these properties ofM remind you of any other set and its properties?

12. Let A =

[

a b
c d

]

∈ R2×2. Let C =
1

ad− bc

[

d −b
−c a

]

, with ad−bc 6= 0.

Show that AC = I2 and CA = I2 . What does this make C with respect to A?

[

a b
c d

](

1

ad− bc

[

d −b
−c a

])

=
1

ad− bc

[

a b
c d

] [

d −b
−c a

]

=
1

ad− bc

[

ad− bc 0
0 −bc+ ad

]

=

[

1 0
0 1

]

= I2.

The argument to show that CA = I2 is similar. What this means is that C
is A’s multiplicative inverse, i.e. C = A−1.

13. Use the result from problem 12 to solve the linear system

5x− 7y = 11

9x+ 2y = −4

Check your answer by another means.
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First, we rewrite the system in matrix form as:
[

5 −7
9 2

] [

x
y

]

=

[

11
−4

]

.

Setting A =

[

5 −7
9 2

]

, then

[

x
y

]

= A−1

[

11
−4

]

.

Using the formula from the previous problem gives

A−1 =

[

2
73

7
73

− 9
73

5
73

]

,

and therefore,

[

x
y

]

=

[

2
73

7
73

− 9
73

5
73

]

[

11
−4

]

=

[

− 6
73

− 119
73

]

.

This gives the solution x = − 6
73 and y = − 119

73 .
From the methods of this chapter, we could have also computed the rref

matrix of the augmented matrix given by
[

5 −7 11
9 2 −4

]

,

which, in row reduced form is
[

1 0 − 6
73

0 1 − 119
73

]

.

Notice that this also yields the solution x = − 6
73 and y = − 119

73 .

14. Let your 2 × 2 linear system of equations be given as the matrix equation
AX = B, where

A =

[

a b
c d

]

, X =

[

x
y

]

, and B =

[

α
β

]

where ad−bc 6= 0. Using the result of problem 12, what is the solution formula
for X?

The solution is given by X = A−1B:
[

x
y

]

=
1

ad− bc

[

d −b
−c a

] [

α
β

]

.



Chapter 3

Gauss-Jordan Elimination

and Reduced Row Echelon

Form

3.1 Gauss-Jordan Elimination and rref

1. Give both an algebraic and geometric explanation of why underdetermined
systems typically have an infinite number of solutions while overdetermined
systems typically have no solution.

A system is underdetermined implies that there are more variables than
equations. Therefore, when solving there will most likely be variables ‘left over’.
For instance, given n equations and n+ k variables one can typically solve for
the first n variables in terms of the remaining k. Geometrically speaking, if
we intersect two n + k dimensional objects, the result is usually of dimension
n+k−1. Repeating this process n−1 more times would give the intersection of
n of the n+k dimensional objects, which we would expect to be of dimension k.

A system is overdetermined implies that there are fewer variables than equa-
tions. Algebraically, this allows for the possibility of isolating a single variable
from several different unrelated equations, giving rise to the possibility of dif-
ferent solutions for a single variable, implying no solution exists. Geometrically
speaking, it is easiest to think of lines in R2 first. A line has as its solution,
itself. Two lines typically intersect at a single point. Three lines typically do
not intersect at a common point. Applying the same geometric argument as in
the underdetermined system, (but with swapping n and n+k) gives a negative
dimension to the solution, implying that no solution exists.

19
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2. Using your answer to problem 1, construct (if possible) underdetermined
and overdetermined systems that have a single solution, that is, a solution of
dimension 0.

As an example of an overdetermined system, consider:

x+ y = 1

x− 2y = 3

2x− y = 4

,

which is a system of three equations with only two unknown variables. The
solution to this system is

{(

5
3 ,− 2

3

)}

, and is thus of dimension 0.

Underdetermined systems have no solutions of dimension 0. For instance,
consider equations two equation in R3. The intersection of two planes can be
of no dimension, or dimension 1 or 2. For instance, the following system has
no solution, thus has no dimension:

x+ y + z = 1

x+ y + z = −1.

The next system has a solution of dimension 1 (a line):

x+ y + z = 1

x− y = −1,

and can be expressed as
{(

x = 1
2 − 1

2z, y = 1
2 − 1

2z, z
)}

.

Finally, if two planes are the same (up to multiplication by a scalar), the
intersection is dimension 2. Consider the system

x+ y + z = 1

2x+ 2y + 2z = 1,

whose solution is {(x = 1− y − z, y, z)}. Notice that the variable x depends
on the two other variables, y and z, which are independent. Therefore, the
solution has dimension 2.

3. Perform Gauss-Jordan elimination on the following systems of equations,
but with one restriction: You are not allowed to swap row 1 with any other.
Be sure to show each step in the process.
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(a)
x− 3y + z = 6
−2x+ 6y + 3z = 4
2x+ 5y + 6z = 1

−→









1 0 0 − 203
55

0 1 0 − 119
55

0 0 1 16
5









step 1) 2row1 + row2 → row2 step 2) -2row1 + row3 → row3

step 3) row3 + row2 → row2 step 4) 1
11 row2 → row 2

step 5) 3row2 + row1 → row1 step 6) -11row2 +row3 → row3

step 7) − 1
5 row3 → row3 step 8) − 9

11 row3 + row2 → row2

step 9) − 38
11 row3 + row1 → row1

(b)
2x+ 3y − 5z = 7
3x+ 2y + 7z = 8
4x+ 6y + 2z = 1

−→









1 0 0 523
60

0 1 0 − 317
60

0 0 1 − 13
12









step 1) 1
2 row1 → row1 step 2) -3row1+row2 → row2

step 3) -4row1+row3 → row3 step 4) − 2
5 row2 → row2

step 5) − 3
2 row2 + row1 → row1 step 6) 1

12 row3 → row3

step 7) 29
5 row3 + row2 → row2 step 8) − 31

5 row3 + row1 → row1

(c)

x+ y + z = 1
2w + 2x+ 3y + z = 4
2w + 3x+ 4y + 2z = 5
4w + 6x+ 8y + 4z = 10

−→









1 0 1
2 − 1

2 1
0 1 1 1 1
0 0 0 0 0
0 0 0 0 0









step 1) 1
2 row2+row1 → row1 step 2) -2row1+row2 → row2

step 3) -2row1+row3 → row3 step 4) -2row1+row4 → row4

step 5) − 1
2 row2 → row2 step 6) -2row2+row1 → row1

step 7) 2row2 + row4 → row4 step 8) row2+row3 → row3

(d)

w + x+ y + z = 3
2w + 2x+ 2y − 3z = 5
−w + x+ y + z = 6
4w + 6x+ y − 7z = 8

−→















1 0 0 0 − 3
2

0 1 0 0 111
50

0 0 1 0 52
25

0 0 0 1 1
5















step 1) -2 row1 + row2 → row2 step 2) row1 + row3 → row3

step 3) -4row1 + row4 → row4 step 4) 1
2 row3 + row2 → row2

step 5) -row2 + row1 → row1 step 6) -2row2 + row3 → row3

step 7) -2row2 + row4 → row4 step 8) − 1
5 row4 + row3 → row3

step 9) 5row3 + row4 → row4 step 10) -row3 + row2 → row2

step 11) 1
50 row4 → row4 step 12) − 53

5 row4 + row3 → row3

step 13) 73
5 row4 +row2 → row2 step 14) -5row4 + row1 → row1
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(e)
3x+ 4y − 7z = 1
−2x+ 4y − 8z = 2
5x+ z = −1

−→









1 0 1
5 − 1

5

0 1 − 19
10

2
5

0 0 0 0









step 1) 1
3 row1 → row1 step 2) 2row1 +row2 → row2

step 3) -5row1+row3 → row3 step 4) 3
20 row2 → row2

step 5) 20
3 row2 + row3 → row3 step 6) - 43 row2 + row1 → row1

(f)

3x+ 4y − 7z = 1
−2x+ 4y − 8z = 2
5x+ z = −1
−3x+ 4y + 3z = 2

−→















1 0 0 − 11
56

0 1 0 41
112

0 0 1 − 1
56

0 0 0 0















step 1) 1
3 row1 → row1 step 2) 2row1 +row2 → row2

step 3) -5row1+row3 → row3 step 4) 3row1 + row4 → row4

step 5) 3
20 row2 → row2 step 6) -8row2 + row4 → row4

step 7) 20
3 row2 + row3 → row3 step 8) − 4

3 row2 + row1 → row1

step 9) 5
56 row4 → row4 step 10) row4+row3 → row3

step 11) -row3 + row4 → row4 step 12) 19
10 row3 + row2 → row2

step 13) − 1
5 row3 + row1 → row1

4. Write out the solutions to each system from problem 3, and give the dimen-
sion of the solution and the space Rn it lies in.

(a)
{

x = − 203
55 , y = − 119

55 , z = 16
5

}

⊆ R3, and is of dimension 0.

(b)
{

x = 523
60 , y = − 317

60 , z = − 13
12

}

⊆ R3, and is of dimension 0.

(c)
{

w = 1− 1
2y +

1
2z, x = 1− y − z, y = y, z = z

}

⊆ R4, and is of dimen-
sion 2.

(d)
{

w = − 3
2 , x = 111

50 , y = 52
25 , z = 1

5

}

⊆ R4, and is of dimension 0.

(e)
{

x = − 1
5 − 1

5z, y = 2
5 + 19

10z, z = z
}

⊆ R3, and is of dimension 1.

(f)
{

x = − 11
56 , y = 41

112 , z = − 1
56

}

⊆ R3, and is of dimension 0.

5. Write out the solutions to each system from problem 3 in column matrix
format using scalar multiplication by the independent variables.
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(a)





x
y
z



 =





− 203
55

− 119
55

16
5



 (b)





x
y
z



 =





523
60

− 317
60

− 13
12





(c)









w
x
y
z









=









1
1
0
0









+









− 1
2

−1
1
0









y +









1
2
−1
0
1









z (d)









w
x
y
z









=









− 3
2

111
50
52
25
1
5









(e)





x
y
z



 =





− 1
5

2
5
0



+





− 1
5

19
10
1



 z f)





x
y
z



 =





− 11
56

41
112
− 1

56





6. Would Gauss-Jordan elimination be easier to implement in any of the sys-
tems of problem 3 if you were allowed to use the row swap operation? If so,
explain and go through the process of Gauss-Jordan elimination again, using
the row swap operation.

The matrices in parts (a), (d) and (f) could have utilized the row swapping
operation in the Gauss-Jordan elimination process.

(a) step 1) 2row1 + row2 → row2 step 2) -2row1 + row3 → row3

step 3) swap row2 and row3 step 4) 1
11 row2 → row 2

step 5) 3row2 + row1 → row1 step 6) 1
5 row3 → row3

step 7) − 4
11 row3 +row2→ row2 step 8) − 23

11 row3 +row1→ row1

(d) step 1) -2row1 + row2 → row2 step 2) row1 + row3 → row3

step 3) -4row1 + row4 → row4 step 4) swap row2 and row4

step 5) 1
2 row2 → row2 step 6) -2row2 + row3 → row3

step 7) -row2 + row1 → row1 step 8) 1
5 row3 → row3

step 9) 3
2 row3 + row2 → row2 step 10) − 5

2 row3 + row1 → row1

step 11) − 1
5 row4 → row4 step 12) − 13

5 row4 + row3 → row3

step 13) 8
5 row4 +row2 → row2

(f) step 1) 1
3 row1 → row1 step 2) 2row1 +row2 → row2

step 3) -5row1+row3 → row3 step 4) 3row1 + row4 → row4

step 5) 3
20 row2 → row2 step 6) -8row2 + row4 → row4

step 7) 20
3 row2 + row3 → row3 step 8) − 4

3 row2 + row1 → row1

step 9) swap row3 and row4 step 10) 5
56 row3 → row3

step 11) 19
10 row3 + row2 → row2 step 12) − 1

5 row3 + row1 → row1

7. Perform Gauss-Jordan elimination on the following matrices.
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(a)

[

2 −3 6
8 −4 2

]

−→
[

1 0 − 9
8

0 1 − 11
4

]

(b)





2 −3 6 1
8 −4 2 3
7 −3 2 5



 −→









1 0 0 2

0 1 0 4

0 0 1 3
2









(c)









2 −3 4 −5 −10
1 1 −1 1 4
3 5 −9 7 24
2 2 −2 3 9









−→















1 0 0 0 1

0 1 0 0 1

0 0 1 0 −1

0 0 0 1 1















8. Given the following two systems of equations:

(a) 3x+ 4y = −1 (b) 3x+ 4y = 9
4x− 2y = 6 4x− 2y = −10

Explain how the following matrix can be used to solve both systems simulta-
neously, then do so:

[

3 4 −1 9
4 −2 6 −10

]

To solve system (a), we would rref the augmented matrix

A =

[

3 4 −1
4 −2 6

]

.

In a similar fashion, system (b) can be solved by row reducing the augmented
matrix

B =

[

3 4 9
4 −2 −10

]

.

These can be done independently, however, since the left-hand sides of both
augmented matrices are the same (hence they only differ in the last column),
any row operations applied to A to reduce A to rref form will be the same
row operations that are needed to reduce B to rref form. Since each column is
independent of every other column when row reducing, we can simply augment
the last column of B onto the end of A, row reduce, and recover the solution
to both systems at once!

Notice that

rref(A) =

[

1 0 1

0 1 −1

]

, rref(B) =

[

1 0 −1

0 1 3

]

,
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while
[

3 4 −1 9
4 −2 6 −10

]

−→
[

1 0 1 −1

0 1 −1 3

]

.

From the rref matrices above, it should be clear that our argument holds up
to example. Furthermore, the solutions to system (a) and system (b) are the
third and fourth columns of the twice augmented matrix, respectively. We can
write these solutions explicitly as {x = 1, y = −1} and {x = −1, y = 3}.

9. Is it possible for a rref matrix to have more than one row whose corre-
sponding linear equation is 0 = 1? If no, explain why not. If yes, then give an
example.

Clearly a matrix, corresponding to a linear system, can have multiple rows
having the form of the equation 0 = 1. However, the claim is that such a
matrix would not be in rref form. To see this, if rows n and m of a rref matrix
have the form 0 = 1, then both rows n and m must consist entirely of all zeros,
except for the entry in the last column of each, both of which must be nonzero.
If the value in the last column of row n is a, and of row m is b, then multiplying
row n by − b

a
and adding it to row m will zero out all of row m, contradicting

the fact that the matrix was in rref form. Therefore, we can conclude that a
rref matrix can have at most one row whose corresponding linear equation is
0 = 1.

10. A square matrix is called upper triangular if all of its entries below the
main diagonal from upper left to lower right are 0. If A is a square matrix,
then must rref (A) be upper triangular? If yes, explain why. If no, then give
an example.

By the definition of the process of performing Gauss-Jordan elimination,
we start in the upper left corner and zero all elements in the first column below
the first entry. Once complete, we move to the entry in row 2 column 2. The
entries in column 2 below row 2 are then zeroed out, and then the one in row
1 column 2. The process, moving down the diagonal continues until either 1)
you end up in the last row, or 2) you have a 0 in the diagonal entry, in which
case you shift to the right one element in the matrix, and continue on. In either
case, all values below the diagonal will be zero. Therefore, if we start with an
upper triangular matrix, its rref form will be upper triangular.

11. What would have to be true about a linear system so that the rref matrix
of the augmented matrix of this system has all rows of all zeroes except for the
first row? Give examples of the possibilities.

For this scenario to occur, we would have to have each equation be a scalar
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multiple of the first, and only first, equation.

For example, if we start with the simple equation x+2y = 3, and take sev-
eral scalar multiples of this equation, such as −2x− 4y = −6 and 1

2x+ y = 3
2 ,

and row reduce the corresponding augmented matrices, we will be reduced to
just one equation (in this example, we will get exactly the first equation since
the coefficient in front of the x variable is 1).

matrix rref matrix
[

1 2 3

−2 −4 −6

]

−→
[

1 2 3

0 0 0

]

[

1 2 3

1
2 1 3

2

]

−→
[

1 2 3

0 0 0

]









1 2 3

1
2 1 3

2

−2 −4 −6









−→
[

1 2 3

0 0 0

]

.

12. What would have to be true about a linear system so that the rref matrix
of the augmented matrix of this system is an identity matrix? Give examples
of the possibilities.

First off, to end up with the n × n identity matrix we must have n equa-
tions with n−1 variables. This implies that we have an overdetermined system.
Therefore, we must have an overdetermined system, with the added require-
ment that no equation can be expressed as a linear combination of other rows,
so that no row of all zeroes appears in the resulting rref matrix. Of course, if
one row reduces an augmented system and the end result is the n× n identity
matrix, the system has no solution.

As an example consider the system of equations

x+ 2y = 1

−x+ 3y = 1

x− 2y = 2,

whose augmented matrix is given by:









1 2 1

−1 3 1

1 −2 2









.
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Notice that this is a system of three equations in the two variables x and y,
hence this system is overdetermined. When we row reduce, either we should
get a row of all zeros, or we will end up with the 3× 3 identity matrix. In this
example, row reducing does result in I3.

13. What would have to be true about a linear system so that the rref matrix
of the augmented matrix of this system is an identity matrix to the left of the
last column? Give examples of the possibilities.

For a linear system to be row reduced as described above, we must have
a system of n equations in n variables, and a solution of dimension 0, i.e. a
single solution. If the n variables are x1, x2, . . . , xn, and the entries in the last
column are a1, a2, . . . , an, then the matrix







1 . . . 0 a1
...

. . .
...

...
0 . . . 1 an







corresponds to the unique solution xk = ak, for 1 ≤ k ≤ n.

3.2 Elementary Matrices

1. Given a system of n equations in n variables, what would the maximum
number of left multiplications by elementary matrices be to convert the origi-
nal augmented matrix representation of the system to rref form?

Since the augmented matrix will be n× n+ 1, and we need to convert the
everything but the last column to the n× n identity matrix, it should take n2

elementary row operations. If a row swap must be preformed, then that means
that another row has a zero in the correct place, thus negating the requirement
of adding any more left multiplications to the process. The final answer is n2.

2. The example used in this section was a three equation, three variable sys-
tem. Can elementary matrices be used on nonsquare systems? What are the
restrictions?

We are restricted to elementary matrices with square dimension equal to
the number of equations in the non-square system. If there are n equations,
multiplication by elementary matrices will only work on the first n variables in
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the system, resulting in a matrix which may not be in simplest rref form.

3. Use left multiplication by elementary matrices to reduce the following sys-
tems of equations as far as possible. Also determine if the resulting matrix is
in reduced rref form.

(a)
2x− 3y = 7
−2x+ 5y = 1

in augmented form is

[

2 −3 7
−2 5 1

]

E1 =

[

1
2 0

0 1

]

, E2 =

[

1 0

2 1

]

, E3 =

[

1 0

0 1/2

]

, E4 =

[

1 3
2

0 1

]

E4E3E2E1A =

[

1 0 19
2

0 1 4

]

(b)
−7x+ 2y = 5
6x+ 3y = 4

in augmented form is

[

−7 2 5
6 3 4

]

E1 =

[

− 1
7 0

0 1

]

, E2 =

[

1 0

−6 1

]

, E3 =

[

1 0

0 7
33

]

, E4 =

[

1 2
7

0 1

]

E4E3E2E1A =

[

1 0 − 7
33

0 1 58
33

]

(c)
x− 3y + z = 6

−2x+ 6y + 3z = 4
2x+ 5y + 6z = 1

in augmented form is





1 −3 1 6
−2 6 3 4
2 5 6 1





E1 =









1 0 0

2 1 0

0 0 1









, E2 =









1 0 0

0 1 0

−2 0 1









, E3 =









1 0 0

0 0 1

0 1 0









,

E4 =









1 0 0

0 1
11 0

0 0 1









, E5 =









1 3 0

0 1 0

0 0 1









, E6 =









1 0 0

0 1 0

0 0 1
5









,

E7 =









1 0 − 23
11

0 1 0

0 0 1









, E8 =









1 0 0

0 1 − 4
11

0 0 1









E8E7E6E5E4E3E2E1A =









1 0 0 − 203
55

0 1 0 − 119
55

0 0 1 16
5








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(d)
2x+ 3y − 5z = 7
3x+ 2y + 7z = 8
4x+ 6y + 2z = 1

in augmented form is





2 3 −5 7
3 2 7 8
4 6 2 1





E1 =









1
2 0 0

0 1 0

0 0 1









, E2 =









1 0 0

−3 1 0

0 0 1









, E3 =









1 0 0

0 1 0

−4 0 1









,

E4 =









1 0 0

0 − 2
5 0

0 0 1









, E5 =









1 − 3
2 0

0 1 0

0 0 1









, E6 =









1 0 0

0 1 0

0 0 1
12









,

E7 =









1 0 − 31
5

0 1 0

0 0 1









, E8 =









1 0 0

0 1 29
5

0 0 1









E8E7E6E5E4E3E2E1A =









1 0 0 523
60

0 1 0 − 317
60

0 0 1 − 13
12









(e)
−3y + z = 6
−2x+ 3z = 4
2x+ 5y = 1

in augmented form is





0 −3 1 6
−2 0 3 4
2 5 0 1





E1 =









0 1 0

1 0 0

0 0 1









, E2 =









− 1
2 0 0

0 1 0

0 0 1









, E3 =









1 0 0

0 1 0

−2 0 1









,

E4 =









1 0 0

0 − 1
3 0

0 0 1









, E5 =









1 0 0

0 1 0

0 −5 1









, E6 =









1 0 0

0 1 0

0 0 3
14









,

E7 =









1 0 3
2

0 1 0

0 0 1









, E8 =









1 0 0

0 1 1
3

0 0 1









E8E7E6E5E4E3E2E1A =









1 0 0 79
28

0 1 0 − 13
14

0 0 1 45
14








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(f)

w − x− 3y + z = 6
w + 2x− y + 3z = 4
−w + 2x+ 4z = 1
x− 2y + 5z = 1

in augmented form is









1 −1 −3 1 6
1 2 −1 3 4
−1 2 0 4 1
0 1 −2 5 1









E1 =















1 0 0 0

−1 1 0 0

0 0 1 0

0 0 0 1















, E2 =















1 0 0 0

0 1 0 0

1 0 1 0

0 0 0 1















, E3 =















1 0 0 0

0 1
3 0 0

0 0 1 0

0 0 0 1















,

E4 =















1 1 0 0

0 1 0 0

0 0 1 0

0 0 0 1















, E5 =















1 0 0 0

0 1 0 0

0 −1 1 0

0 0 0 1















,E6 =















1 0 0 0

0 1 0 0

0 0 1 0

0 −1 0 1















,

E7 =















1 0 0 0

0 1 0 0

0 0 − 3
11 0

0 0 0 1















, E8 =















1 0 7
3 0

0 1 0 0

0 0 1 0

0 0 0 1















, E9 =















1 0 0 0

0 1 − 2
3 0

0 0 1 0

0 0 0 1















,

E10 =















1 0 0 0

0 1 0 0

0 0 1 0

0 0 8
3 1















, E11 =















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 11
13















, E12 =















1 0 0 12
11

0 1 0 0

0 0 1 0

0 0 0 1















,

E13 =















1 0 0 0

0 1 0 − 16
11

0 0 1 0

0 0 0 1















,E14 =















1 0 0 0

0 1 0 0

0 0 1 13
11

0 0 0 1















,

E14E13E12E11E10E9E8E7E6E5E4E3E2E1A =















1 0 0 0 − 41
13

0 1 0 0 72
13

0 0 1 0 −6

0 0 0 1 − 43
13















4. Use left multiplication by elementary matrices to reduce the following sys-
tems of equations to rref form (or as close as possible). You may leave your
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answer in rref matrix form.

(a)
x− 3y + z = 6

−2x+ 6y + 3z = 4
in augmented form is

[

1 −3 1 6
−2 6 3 4

]

E1 =

[

1 0

2 1

]

E1C =

[

1 −3 1 6

0 0 5 16

]

(b)
2x+ 3y = 7
3x+ 2y = 8

−2x− 5y = −2
in augmented form is





2 3 7
3 2 8
−2 −5 −2





E1 =









1
2 0 0

0 1 0

0 0 1









, E2 =









1 0 0

−3 1 0

0 0 1









, E3 =









1 0 0

0 1 0

2 0 1









,

E4 =









1 0 0

0 − 2
5 0

0 0 1









, E5 =









1 − 3
2 0

0 1 0

0 0 1









, E6 =









1 0 0

0 1 0

0 2 1









,

E7 =









1 0 0

0 1 0

0 0 1
7









, E8 =









1 0 2

0 1 0

0 0 1









, E9 =









1 0 −2

0 1 0

0 0 1









E9E8E7E6E5E4E3E2E1C =









1 0 0

0 1 0

0 0 1









(c)
w + x+ z = 1
x+ 3z = 4
6y + 2z = 1

in augmented form is





1 1 0 1 1
0 1 0 3 4
0 0 6 2 1





E1 =









1 −1 0

0 1 0

0 0 1









, E2 =









1 0 0

0 1 0

0 0 1
6









,

E2E1C =









1 0 0 −2 −3

0 1 0 3 4

0 0 1 1
3

1
6








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(d)
2x+ 3y = 7
3x+ 2y = 8
x− y = 1

in augmented form is





2 3 7
3 2 8
1 −1 1





E1 =









1
2 0 0

0 1 0

0 0 1









, E2 =









1 0 0

−3 1 0

0 0 1









, E3 =









1 0 0

0 1 0

−1 0 1









,

E4 =









1 0 0

0 − 2
5 0

0 0 1









, E5 =









1 0 0

0 1 0

0 5
2 1









, E6 =









1 − 3
2 0

0 1 0

0 0 1









E6E5E4E3E2E1C =









1 0 2

0 1 1

0 0 0









5. Use the elementary matrices from part (a) of problem 3, on the following
two corresponding systems. Explain what this implies.

(a)
2x− 3y = 3

−2x+ 5y = −4
in augmented form is

[

2 −3 3
−2 5 −4

]

E4E3E2E1A =

[

1 0 27
4

0 1 7
2

]

(b)
2x− 3y = −2
−2x+ 5y = −1

in augmented form is

[

2 −3 −2
−2 5 −1

]

E4E3E2E1A =

[

1 0 − 13
4

0 1 − 3
2

]

What this implies, is that as long as the left hand sides of the equations
are the same, the elementary matrices do not change. Thus, one can solve a
multitude of problems, where only the right hand side changes, using the same
sequence of elementary matrix multiplications.

6. (a) Give examples, E1, E2, and E3, of each of the 3 types of 4×4 elementary
matrices.

Obviously answers will vary, but here is one set of examples:
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E1 =















1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0















,E2 =















1 0 0 0

0 2 0 0

0 0 1 0

0 0 0 1















,E3 =















1 0 0 0

0 1 0 0

0 0 1 0

0 −1 0 1















(b) Next, find for each of the elementary matrices E1, E2, and E3, of part
a another elementary matrix F1, F2, and F3 of the same type and size as the
corresponding E so that FkEk = I4 and EkFk = I4 for k = 1, 2, 3. Each
Fk = E−1

k , that is, each Fk is Ek’s multiplicative inverse and vice versa.

F1 =















1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0















,F2 =















1 0 0 0

0 1
2 0 0

0 0 1 0

0 0 0 1















,F3 =















1 0 0 0

0 1 0 0

0 0 1 0

0 1 0 1















(c) Compute rref (Ek| I4), for k = 1, 2, 3 where (Ek| I4) is the 4 × 8 aug-
mented matrix. What is the result of these 3 rref ’s?

rref (E1| I4) =















1 0 0 0 1 0 0 0

0 1 0 0 0 0 0 1

0 0 1 0 0 0 1 0

0 0 0 1 0 1 0 0















rref (E2| I4) =















1 0 0 0 1 0 0 0

0 1 0 0 0 1
2 0 0

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1















rref (E3| I4) =















1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0

0 0 0 1 0 1 0 1















The right half of each rref (Ek| I4) corresponds to the Fk’s, for k = 1, 2, 3.

7. (a) Give examples E1, E2, E3, of each of the 3 types of 4 × 4 elementary
matrices.
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E1 =















0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0















,E2 =















1 0 0 0

0 1 0 0

0 0 −3 0

0 0 0 1















,E3 =















1 0 0 0

0 1 0 0

3 0 1 0

0 0 0 1















(b) Next, compute E2
1 , E

2
2 , E

2
3 and E3

1 , E
3
2 , E

3
3 . Now give a general formula

for Em
1 , Em

2 , Em
3 , where m is any positive integer.

E2
1 =















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1















,E2
2 =















1 0 0 0

0 1 0 0

0 0 9 0

0 0 0 1















,E2
3 =















1 0 0 0

0 1 0 0

6 0 1 0

0 0 0 1















E3
1 =















0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0















,E3
2 =















1 0 0 0

0 1 0 0

0 0 −27 0

0 0 0 1















,E3
3 =















1 0 0 0

0 1 0 0

9 0 1 0

0 0 0 1















E2n
1 =















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1















, E2n+1
1 =















0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0















,

Em
2 =















1 0 0 0

0 1 0 0

0 0 (−3)m 0

0 0 0 1















,Em
3 =















1 0 0 0

0 1 0 0

3m 0 1 0

0 0 0 1















(c) If you did problem 6, then find a general formula for Em
1 , Em

2 , Em
3 ,

where m is any negative integer.
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E2n
1 =















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1















, E2n+1
1 =















1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0















,

Em
2 =















1 0 0 0

0 2m 0 0

0 0 1 0

0 0 0 1















,Em
3 =















1 0 0 0

0 1 0 0

0 0 1 0

0 −m 0 1















(d) Can you put parts (b) and (c) of this problem together to get a general
formula for Em

1 , Em
2 , Em

3 , where m is any integer?

For type I matrices, of E2m+1
1 = E1 and E2m

1 = In.

For type II matrices, you simply raise the entry on the diagonal not equal
to one to the mth power.

For type III matrices, you simply multiply the nonzero entre off the diago-
nal by m.

8. Let E and F be two 3 × 3 elementary matrices. What must be true about
E and F so that EF = FE, that is, E and F commute?

If E and F are any two type II elementary matrices, then they will com-
mute. Furthermore, type III elementary matrices with entries in the same
column also commute, as discussed in the text. However, they must be in the
same column. If E and F are inverses of each other, as described in problem
6b), they will also commute.

9. (a) Which type of elementary matrix is always a diagonal matrix? A diag-
onal matrix is a square matrix A, where all entries Ai,j = 0, when i 6= j.

Elementary matrices of type II are diagonal.

(b) Which type of elementary matrix is always an upper or lower triangular
matrix? An upper or lower triangular matrix is a square matrix A where in
the upper triangular case all entries Ai,j = 0 when i > j while in the lower
triangular case all entries Ai,j = 0 when i < j.

Elementary matrices of type III will always be upper or lower triangular,
since they are constructed as the identity matrix with one non-zero off diagonal
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entry.

It should be noted that type I elementary matrices are not diagonal nor
triangular.

3.3 Sensitivity of Solutions to Error in the

Linear System

Consider the following systems of equations:

(a) −x+ 0.048y = 6 (b) −x+ 0.049y = 6
2x− 0.1y = 24 2x− 0.1y = 24

(c) −x+ 0.048y = 6.1 (d) −x+ 0.048y = 6
2x− 0.1y = 24 2.01x− 0.1y = 24

We will denote system (a) as the exact system, while (b), (c), and (d) will be
approximate systems. Answer the following questions:

1. Solve all four systems for the variables x and y.

(a) {x = −438, y = −9000}

(b) {x = −888, y = −18000}

(c) {x = −440.5, y = −9050}

(d) {x = −497.7272727, y = −10244.31818}

2. Compute the Euclidean distance between the solution to the actual system
and each of the three approximate systems.

(a) d((xa, ya), (xb, yb)) = 8.1202500× 107

(b) d((xa, ya), (xc, yc)) = 2506.25

(c) d((xa, ya), (xd, yd)) = 1.551895080× 106
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3. The Frobenius norm of an m×n matrix A (with potentially complex entries)
is one way to measure the magnitude, or length, of a matrix. It is given by the
following formula:

‖ A ‖F=

√

√

√

√

m
∑

i=i

n
∑

j=1

|Ai,j |2

The Frobenius distance between two matrices A and B of the same size is
‖ A − B ‖F . Use this definition of the Frobenius norm to compute the dis-
tance between the augmented matrix corresponding to the exact system and
the augmented matrices corresponding to approximate systems.

(a) ‖ A−B ‖F= 0.001

(b) ‖ A− C ‖F= 0.1

(c) ‖ A−D ‖F= 0.01

4. One might expect that the corresponding Frobenius norms from problem 3
should be arranged in the same order as the distances found in problem 2. Can
you come up with a reason as to why this is not the case?

Solving each equation Ax + By = C for y puts each into the standard
y = mx + b form. If there is a large relative difference in the values of B for
the exact and approximate system (for instance if B is small), this will greatly
affect the values of m and b. However, if A is slightly changed, or C, all that
happens will be slight changes in slopes or shifting of the lines up and down.
Of course, everything depends on the relative values of A, B and C.

Consider the following systems of equations:

(a) 6w − 3x+ 2y = 7 (b) 6w − 3x+ 2y = 7
w − 2x+ 4y = 5 w − 2x+ 4y = 5
4w + x− 7y = 0 4w + x− 6.1y = 0

(c) 6w − 3x+ 2y = 7 (d) 6w − 3x+ 2y = 7
w − 2x+ 4y = 5 w − 2x+ 4y = 5
5w + x− 7y = 0 4w + x− 7y = −2

As before, we will denote system (a) as the exact system, while (b), (c), and
(d) will be approximate systems. Answer the following questions:

5. Solve all four systems for the variables w, x, and y.
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(a) {w = −2.777777778, x= −9.888888889, y = −3}

(b) {w = −26.77777776, x= −75.88888885, y = −29.99999998}

(c) {w = −25, x = −71, y = −28}

(d) {w = −1, x = −5, y = −1}

6. Compute the Euclidean distance between the solution to the exact system
and each of the three approximate systems.

(a) d((wa, xa, ya), (wb, xb, yb)) = 75.23961718

(b) d((wa, xa, ya), (wc, xc, yc)) = 69.66631224

(c) d((wa, xa, ya), (wd, xd, yd)) = 5.573304980

7. Compute the Frobenius norm of the distance between the augmented matrix
corresponding to the exact system and the augmented matrices corresponding
to approximate systems.

(a) ‖ A−B ‖F= 0.09

(b) ‖ A− C ‖F= 1

(c) ‖ A−D ‖F= 2



Chapter 4

Applications of Linear

Systems and Matrices

4.1 Applications of Linear Systems to

Geometry

1. Find equations of the circles that pass through the following sets of points:

We will use the equation Dx+ Ey + F = −(x2 + y2) for this problem.

(a)
{(

0,−1−
√
3
)

, (1, 1) ,
(

1 +
√
3,−2

)}

Our system of three equations and three unknowns is given by
(

−1−
√
3
)

E + F = −
(

−1−
√
3
)2

D + E + F = −2
(

1 +
√
3
)

D − 2E + F = −
(

1 +
√
3
)2

− 4.

Solving this system of equations gives the solution {D = −2, E = 2, F = −2}.
Therefore, the circle passing through these three points is

x2 + y2 − 2x+ 2y − 2 = 0.

(b) {(3, 7) , (3, 1) , (6, 4)}
Our system of three equations and three unknowns is given by

3D + 7E + F = −58

3D+ E + F = −10

6D + 4E + F = −52.

39
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Solving this system of equations gives the solution {D = −6, E = −8, F = 16}.
Therefore, the circle passing through these three points is

x2 + y2 − 6x− 8y + 16 = 0.

2. Find equations of the planes that pass through the following sets of points:

We will attempt to use the form, E x + F y + Gz = 1, of a plane for the
points given. Here we assumed the constant term was nonzero and divided
through by it to reduce our equation to one with only three unknowns.

(a) {(1,−2,−5) , (−3,−2, 1) , (−3,−1, 3)}

Our system of three equations in terms of E, F and G are given by:

E − 2F − 5G = 1

−3E − 2F +G = 1

−3E − F + 3G = 1.

Solving this system of equations gives the solution {E = 3, F = −4, G = 2}.
Therefore, the plane passing through these three points is

3 x− 4 y + 2 z = 1.

(b) {(−4, 3, 8) , (−6,−2, 1) , (−3, 0, 3)}

Our system of three equations in terms of E, F and G are given by:

−4E + 3F + 8G = 1

−6E − 2F +G = 1

−3E + 3G = 1.

Solving this system of equations gives the solution
{

E = 4
21 , F = − 17

21 , G = 11
21

}

.
Therefore, the plane passing through these three points is

4

21
x− 17

21
y +

11

21
z = 1.

3. Find the equation of the plane that passes through the following points:

{(1,−2, 11) , (−1, 1,−7) , (2, 1, 2)}

We will attempt to use the form, E x + F y + Gz = 1, of a plane for the
points given. Here we assumed the constant term was nonzero and divided
through by it to reduce our equation to one with only three unknowns.
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Our system of three equations in terms of E, F and G are given by:

E − 2F + 11G = 1

−E + F − 7G = 1

2E + F + 2G = 1.

In matrix form, we have





1 −2 11 1
−1 1 −7 1
2 1 2 1



 ,

which row reduced gives




1 0 3 0
0 1 −4 0
0 0 0 1



 .

The last row yields the equation 0 = 1, hence the system has no solution.
What does this mean? Well, we cannot fit the three points given to a plane of
the form E x + F y + Gz = 1. Note that we assumed the constant term was
nonzero, hence divided through by it. This must be false, hence the constant
term must be zero. Let us try using a different form of the plane, namely:
E x + F y +Gz = 0 Now we really appear to have an extra variable, since we
could divide through by any of E, f or G, however we cannot be sure that any
of them are nonzero (although this can be verified by looking at the points in
question).

Our new system of three equations in terms of E, F and G are given by:

E − 2F + 11G = 0

−E + F − 7G = 0

2E + F + 2G = 0.

Solving this system of equations gives the solution {E = −3G,F = 4G}. No-
tice that G is an independent variable, hence we can set it to an nonzero value
we wish. In this case, let G = 1, which gives E = −3 and F = 4. The equation
of our plane is thus given by

−3 x+ 4 y + z = 0.

4. A sphere of radius r, centered at the point (a, b, c), can be expressed by the
equation

(x− a)2 + (y − b)2 + (z − c)2 = r2

Construct a linear system of equations that can be solved to find the sphere
that fits a set of data points in R3. How many points are required to determine
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a unique sphere?

If we expand the above expression, we get

x2 − 2ax+ a2 + y2 − 2ab+ b2 + z2 − 2cz + c2 = r2.

Upon setting A = −2a, B = −2b, C = −2c and D = a2+ b2+ c2− r2 we arrive
at the new equation and moving all terms with no constants to the right hand
side yields

Ax +By + Cz +D = −(x2 + y2 + z2).

We have 4 unknowns A, B, C and D, from which we can easily compute a, b,
c and d. Therefore, we need 4 points to determine a unique sphere.

5. Find the equation of the spheres that fit the following set of points:

(a)
{(

2, 3, 3− 2
√
3
)

,
(

4, 1 + 2
√
3, 3

)

, (2, 1,−1) , (6, 1, 3)
}

Using the equation from the answer to problem 3 gives the following system
of equations:

2A+ 3B + C
(

3− 2
√
3
)

+D = −13−
(

3− 2
√
3
)2

4A+B
(

1 + 2
√
3
)

+ 3C +D = −25−
(

1 + 2
√
3
)2

2A+B − C +D = −6

6A+B + 3C +D = −46.

Solving for A, B, C andD gives {A = −4, B = −2, C = −6, D = −2}. In terms
of a, b, c and r we get {a = 2, b = 1, c = 3, r = 4}. So the equation of the sphere
is

(x− 2)2 + (y − 1)2 + (z − 3)2 = 42.

(b) {(−3,−1,−3) , (0,−4, 1) , (−2, 0, 1) , (1,−1, 1)}

Using the given four points, we end up with the following systems of equa-
tions:

−3A− B − 3C +D = −19

−4B + C +D = −17

−2A+ C +D = −5

A−B + C +D = −3.

Solving for A, B, C and D gives {A = 2, B = 4, C = 2, D = −3}. In terms of
a, b, c and r we get {a = −1, b = −2, c = −1, r = 3}. So the equation of the
sphere is

(x+ 1)2 + (y + 2)2 + (z + 1)2 = 32.
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6. Explain what happens when you attempt to find the equation of a conic for
which three of the given points are collinear.

Given five distinct points, three of which are collinear, then the resulting
conic is called degenerate. In this situation, you will either end up with two
distinct lines, or one double line (i.e. a line of the form (ax+ by+ c)2 = 0). As
an example, consider the following sets of points:

{(−1, 1), (0, 1), (1, 1), (2, 3), (−2, 0)} ,

which results in the following system of equations:

A−B + C −D + E + F = 0

C + E + F = 0

A+B + C +D + E + F = 0

4A+ 6B + 9C + 2D + 3E + F = 0

4A− 2D + F = 0.

The solution to this system of equations is

{

A = 0, C = −4

3
B,D = −B,E =

10

3
B,F = −2B

}

,

and setting B = 1 gives the conic

xy − 4

3
y2 − x+

10

3
y − 2 = 0.

Notice that this factors as the product of two lines, as depicted below:

1

3
(y − 1) (−4 y + 6 + 3 x) = 0,

–2

2

4

y

–2 2 4x

Figure 4.1: Degenerate conic section in this example is the product of two lines.
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7. (See Section 4.4 for more details about rotations in the plane.) Let (x′, y′)
be a new coordinate system that is a rotation about the origin through the
angle θ of the standard (x, y) Cartesian coordinate system. (This is actually a
rotation about the origin of the x and y axes to produce the new x′ and y′ axes,
respectively.) Then these two coordinate systems are related by the equations

x′ = cos(θ)x − sin(θ) y

y′ = sin(θ)x+ cos(θ) y

or the single matrix equation
[

x′

y′

]

=

[

cos(θ) − sin(θ)
sin(θ) cos(θ)

] [

x
y

]

Let
Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0

be a conic section in the xy-coordinate system. Find the equation of this conic
section

A′x′ 2 +B′x′y′ + C′y′ 2 +D′x′ + E′y′ + F ′ = 0

in the x′y′-coordinate system. In particular, find formulas for the coefficients A′

through F ′ in terms of A through F and θ. Also, show that the discriminants
of both equations are equal, that is,

B′ 2 − 4A′C′ = B2 − 4AC

Also, find a formula in terms of A through F for the angle θ which makes
B′ = 0. Now find this angle θ and corresponding values of A′ through F ′ for
the conic given by

4x2 + 6xy − 2y2 + 7x+ y − 1 = 0.

First, in order to write the the conic in terms of the rotated variables x′

and y′, we need to write x and y in terms of x′ and y′. To do this, we simply
compute the inverse rotation matrix (which is equivalent to replacing θ with
−θ in this situation):

[

x
y

]

=

[

cos(θ) sin(θ)
− sin(θ) cos(θ)

] [

x′

y′

]

.

Therefore, we have x = cos(θ)x′ + sin(θ) y′ and y = − sin(θ)x′ + cos(θ) y′,
which we substitute into the conic equation:

A (cos(θ)x′ + sin(θ) y′)
2
+B (cos(θ)x′ + sin(θ) y′) (− sin(θ)x′ + cos(θ) y′)

+ C (− sin(θ)x′ + cos(θ) y′)
2
+D (cos(θ)x′ + sin(θ) y′)

+ E (− sin(θ)x′ + cos(θ) y′) + F = 0.
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Upon multiplying everything out and collecting terms, we end up with the
following:
(

A cos2(θ) −B cos(θ) sin(θ) + C sin2(θ)
)

x′ 2 +
(

2A cos(θ) sin(θ) +B cos2(θ)

−B sin2(θ)− 2C cos(θ) sin(θ)
)

x′y′ +
(

A sin2(θ) +B sin(θ) cos(θ)

+C cos2(θ)
)

y′ 2 + (D cos(θ)− E sin(θ)) x′ + (D sin(θ) + E cos(θ)) y′ + F = 0

Thus, we get from the above expansion that

A′ = A cos2(θ)−B cos(θ) sin(θ) + C sin2(θ)

B′ = 2A cos(θ) sin(θ) +B cos2(θ)−B sin2(θ) − 2C cos(θ) sin(θ)

C′ = A sin2(θ) +B sin(θ) cos(θ) + C cos2(θ)

D′ = D cos(θ)− E sin(θ)

E′ = D sin(θ) + E cos(θ)

F ′ = F.

To show that the two discriminants are equal, we simply substitute into
B′ 2 − 4A′C′ the values above, expand, perform simplifications with the end
result being B2 − 4AC.

Next, setting B′ = 0 results in the equation

2 cos(θ) sin(θ)(C −A) = B(cos2(θ)− sin2(θ)).

Using double angle identities yields

sin(2θ)(C −A) = B cos(2θ),

which is simply either tan(2θ) =
B

C −A
, or cot(2θ) =

C −A

B
.

For the conic 4x2 + 6xy− 2y2 +7x+ y− 1 = 0, A = 4, B = 6 and C = −2.

Solving tan(2θ) =
B

C −A
for these values of A, B and C gives tan(2θ) = −1,

or θ =
π

8
. This gives the following values for the transformed coefficients:

A′ = 1− 3
√
2

B′ = 0

C′ = 1 + 3
√
2

D′ = 7 cos

(

3π

8

)

− sin

(

3π

8

)

E′ = 7 sin

(

3π

8

)

+ cos

(

3π

8

)

F ′ = −1,
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which gives the new conic section to be

(

1− 3
√
2
)

x′ 2 +
(

1 + 3
√
2
)

y′ 2 +

(

7 cos

(

3π

8

)

− sin

(

3π

8

))

x′

+

(

7 sin

(

3π

8

)

+ cos

(

3π

8

))

y′ − 1 = 0.

We plot both the original conic and the rotated conic below:

–4

–2

0

2

4

y

–4 –2 2 4
x

Figure 4.2: Conic section, and rotated conic section. The hyperbola opening
straight up and down is the transformed (x′, y′) hyperbola, since B′ = 0.

4.2 Applications of Linear Systems to Curve

Fitting

1. If a set of data has two points that have the same x-coordinate, but differ-
ent y-coordinates, a problem occurs when attempting to perform Gauss-Jordan
elimination. As an example, consider the function y = Ax2 +Bx+C, and the
set of points {(1, 1), (2, 3), (1, 2)}. What is the problem and why does it occur?

The system will be inconsistent. Consider the two points (x1, y1) and
(x1, y2). In order to fit these points to a function of the form

y = a1f1(x) + a2f2(x) + · · ·+ anfn(x),
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we would have to plug in the points (x1, y1) and (x1, y2). This results in the
two equations

y1 = a1f1(x1) + a2f2(x1) + · · ·+ anfn(x1)

y2 = a1f1(x1) + a2f2(x1) + · · ·+ anfn(x1).

Clearly this will cause a problem when row reducing.

Let us look at the example. The system of equations that we arrive at is

A+ B + C = 1

4A+ 2B + C = 3

A+ B + C = 2,

which is augmented matrix form is





1 1 1 1
4 2 1 3
1 1 1 2



 .

Upon row reducing we get









1 0 − 1
2 0

0 1 3
2 0

0 0 0 1









.

Notice that the last equations reads 0 = 1, hence the system has no solution.

2. Set up, but do not solve, the matrix required to find the constants to fit the
following data points to the corresponding functions.

(a) {(0, 0), (1, 2), (−3, 4)},
{

1, x, x2
}

If we set y = Ax2 +Bx+ C, the our system of equations is

C = 0

A+ B + C = 2

9A− 3B + C = 4.

In augmented matrix form this system is





0 0 1 0
1 1 1 2
9 −3 1 4



 .
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(b) {(0, 0), (1, 2), (−3, 4), (−1, 5)},
{

1, x, x2, x3
}

If we set y = Ax3 +Bx2 + Cx+D, the our system of equations is

D = 0

A+B + C +D = 2

−27A+ 9B − 3C +D = 4

−A+B − C +D = 5.

In augmented matrix form this system is









0 0 0 1 0
1 1 1 1 2

−27 9 −3 1 4
−1 1 −1 1 5









.

(c) {(2, 3), (1, 2), (−3, 4), (−1, 5)},
{

1, x, x2,
1

x

}

If we set y = A
x
+Bx2 + Cx+D, the our system of equations is

1

2
A+ 4B + 2C +D = 3

A+B + C +D = 2

−1

3
A+ 9B − 3C +D = 4

−A+B − C +D = 5.

In augmented matrix form this system is

















1
2 4 2 1 3

1 1 1 1 2

− 1
3 9 −3 1 4

−1 1 −1 1 5

















.

(d)
{

(0, 1), (π, 2),
(

−π
4 ,−1

)}

, {1, sin(x), cos(x)}

If we set y = A cos(x)+B sin(x)+C, then our system of equations becomes

A+ C = 1

−A+ C = 2

1√
2
A− 1√

2
B + C = −1.
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In augmented matrix form this system is







1 0 1 1
−1 0 1 2
1√
2

− 1√
2

1 −1






.

3. So far, this section has been devoted to finding a one-dimensional curve of
the form y = a1f1(x) + a2f2(x) + · · ·+ anfn(x) given a set of n data points of
the form (xi, yi). Discuss how this method can be extended to functions of two
variables, given by z = a1f1(x, y) + a2f2(x, y) + · · · + anfn(x, y), with n data
points of the form (xi, yi, zi)?

We simply start with a set of equations of the form

zi = a1f1(xi, yi) + a2f2(xi, yi) + · · ·+ anfn(xi, yi),

for i ≤ i ≤ n. Then, all we do is modify equation (4.7) as follows:











f1 (x1, y1) f2 (x1, y1) · · · fn (x1, y1) z1
f1 (x2, y2) f2 (x2, y2) · · · fn (x2, y2) z2

...
...

...
...

f1 (xn, yn) f2 (xn, yn) · · · fn (xn, yn) zn











,

and row reduce to find the values of the a′is.

4. Set up, but do not solve, the matrix required to find the constants to fit the
following data points to the corresponding functions:

(a) {(0, 1, 2), (1, 2, 4), (−1, 2,−1), (1, 0,−3)}, {1, x, y, xy}

Now we set z = Axy +By + Cx+D, to get the system of equations

B +D = 2

2A+ 2B + C +D = 4

−2A+ 2B − C +D = −1

C +D = −3,

which in augmented matrix form is









0 1 0 1 2
2 2 1 1 4
−2 2 −1 1 −1
0 0 1 1 −3









.
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(b) {(0, 1, 2), (1, 2, 4), (−1, 2,−1), (1, 0,−3)},
{

1, x, y, (x− y)2
}

For our second set of points, we set our function to z = A(x − y)2 + By +
Cx +D, to get the system of equations

A+B +D = 2

A+ 2B + C +D = 4

9A+ 2B − C +D = −1

A+ C +D = −3,

which in augmented matrix form is









1 1 0 1 2
1 2 1 1 4
9 2 −1 1 −1
1 0 1 1 −3









.

5. The Lagrange polynomial L(x) for a data set Dn of n points given by

{(x1, y1), (x2, y2), . . . , (xn, yn)}

for distinct x-coordinates, is the smallest degree polynomial that passes through
all of the points of the data set. What is the maximum degree of the Lagrange
polynomial L(x) passing through Dn?

So we are looking for the largest of the smallest degree polynomial that
will pass through all the points in Dn. From our observations thus far, a line
is the smallest degree polynomial that normally passes through two points, a
parabola through three points etc... In general, what we find is that the maxi-
mum degree of L(x) is n− 1.

4.3 Applications of Linear Systems to

Economics

There are no Homework Problems for this section.
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4.4 Applications of Matrix Multiplication to

Geometry

1. Consider the point P (3, 0). Without using matrix multiplication, find the

resulting points Q, R, and S after rotating P about the origin by angles
π

4
,
π

2
,

and
3

2
π, respectively.

Q
(

3√
2
, 3√

2

)

R (0, 3) S (0,−3)

2. Use matrix multiplication to perform the rotations in problem 1.

Q

(

3√
2
,
3√
2

)

=





1√
2

− 1√
2

1√
2

1√
2





[

3
0

]

R (0, 3) =

[

0 −1
1 0

] [

3
0

]

S (0,−3) =

[

0 1
−1 0

] [

3
0

]

3. Given a point P , let Q be the point corresponding to the rotation of P
about the origin through an angle θ. Let R be the point corresponding to the
rotation of Q about the origin through the angle φ. Verify that

AφAθ = Aφ+θ

and thus that
R = Aφ+θP = AφAθP = AθAφP

We start with simple matrix multiplication and sum of angle trig identities
for cos and sin:

AφAθ =

[

cos (φ) − sin (φ)
sin (φ) cos (φ)

] [

cos (θ) − sin (θ)
sin (θ) cos (θ)

]

=

[

cos (φ) cos (θ)− sin (φ) sin (θ) − cos (φ) sin (θ)− sin (φ) cos (θ)
sin (φ) cos (θ) + cos (φ) sin (θ) cos (φ) cos (θ)− sin (φ) sin (θ)

]

=

[

cos(φ+ θ) − sin(φ+ θ)
sin(φ+ θ) cos(φ+ θ)

]

= Aφ+θ.

4. Geometrically, the same property discussed in problem 3 should hold for an
arbitrary center of rotation. For instance, if we start with a point P , rotate
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it through an angle θ to the point Q, and the rotate Q through an angle φ to
end up at R; this should be equivalent to starting at P and rotating through
an angle of φ+ θ, independent of the center. To show this, consider

Q = Aθ(P − C) + C, R = Aθ(Q − C) + C

and prove that
Aφ+θ(P − C) + C = Aφ [Q− C] + C

The following proves the idea:

R = Aφ [Q− C] + C

= Aφ [Aθ(P − C) + C)− C] + C

= Aφ [Aθ(P − C)] + C

= AφAθ [(P − C)] + C

= Aφ+θ [(P − C)] + C

5. Find the coordinates of the point Q corresponding to the point P (3, 3) that

has been rotated about the point C(1, 1) by an angle of θ =
π

4
.

Q =





1√
2

− 1√
2

1√
2

1√
2





([

3
3

]

−
[

1
1

])

+

[

1
1

]

=

[

1

2
√
2 + 1

]

.

Therefore, our rotated point is Q
(

1, 2
√
2 + 1

)

.

6. Given a point P , a point Q and a center of rotation C, how can one find the
angle θ through which P was rotated to end up at Q?

If we start with Q = Aθ(P −C)+C, where the only unknown is θ, then we
have two equations in the unknowns cos(θ) and sin(θ). Solving for cos(θ) and
sin(θ) and then taking trig inverses allows one to solve for θ.

7. Consider the points P (4, 5) and Q(2, 2
√
2+3) and center of rotation C(2, 3).

Determine the angle θ through which P was rotated about C to end up at point
Q.

We start with
[

2

2
√
2 + 3

]

=

[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]([

4
5

]

−
[

2
3

])

+

[

2
3

]

,
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which simplifies to

[

0

2
√
2

]

=

[

cos(θ) − sin(θ)
sin(θ) cos(θ)

] [

2
2

]

.

This yields two equations:

0 = 2 cos(θ)− 2 sin(θ)

2
√
2 = 2 cos(θ) + 2 sin(θ).

Clearly, θ = π
4 is the solution to these equations.

8. Find the coordinates of the point Q corresponding to the point P (3, 3) after
it has been rotated about the point C(1, 3) by an angle of θ = π. Consider this
problem from a geometric point of view, explain how you could have known
the answer without performing any matrix multiplication.

Since the y coordinates are the same, rotation by θ = π is simply going to
place the point on the opposite side of the center, at Q(−1, 3).

9. As discussed in this section, the matrix Aθ corresponds to a counter-
clockwise rotation about the origin. How can you modify the matrix Aθ to
perform clockwise rotations?

We would simply replace θ with −θ to get:

A−θ =

[

cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

]

=

[

cos(θ) sin(θ)
− sin(θ) cos(θ)

]

= A−1
θ .

10. The process of rotation about a point can be generalized to three di-
mensions. Given a point P (x0, y0, z0), determine what rotations the following
matrices perform upon the point P .

A1 =





1 0 0
0 cos(θ) sin(θ)
0 − sin(θ) cos(θ)





A2 =





cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)





A3 =





cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1





A1 is rotation about x−axis, A2 about y−axis and A3 about z−axis.
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11. (a) What 3×3 matrix R will carry out, by a single matrix multiplication by
R, the following three consecutive rotations in space in the given order: first,
rotate in space by the angle α about the x-axis followed by a rotation by the
angle β about the y-axis followed by a rotation by the angle γ about the z-axis?

We simply perform the following matrix multiplication A3(γ)A2(β)A1(α)
as follows:





cos (γ) sin (γ) 0
− sin (γ) cos (γ) 0

0 0 1









cos (β) 0 − sin (β)
0 1 0

sin (β) 0 cos (β)









1 0 0
0 cos (α) sin (α)
0 − sin (α) cos (α)



 =













cos (γ) cos (β) sin (γ) cos (α) + cos (γ) sin (β) sin (α) sin (γ) sin (α) − cos (γ) sin (β) cos (α)

− sin (γ) cos (β) cos (γ) cos (α) − sin (γ) sin (β) sin (α) cos (γ) sin (α) + sin (γ) sin (β) cos (α)

sin (β) − cos (β) sin (α) cos (β) cos (α)













(b) Is it the same matrix R if we switch the order of these three consecutive
rotations, explain?

No, order does matter, and simple calculations prove this. If one considers
the geometric interpretations, the answer should be self-evident.

12. How can you use matrix multiplication and addition/subtraction to rotate
in space about a line parallel to one of the three coordinate axes?

Given a point P and a line L in the direction of one of the coordinate axes
simply perform a shift similar to that which we have done in the past, to result
in the point Q:

Q = Ak (P − C) + C.

Here, Ak, for 1 ≤ k ≤ 3, is one of the three rotation matrices from the previous
problem. The definition of the point C is not the same, as there is no center
of rotation, instead there is a rotation about the line L. In this instance, C is
the point whose only nonzero coordinate coordinate of P corresponding to the
axis of rotation. This process simply creates a plane of rotation which happens
to be one xy, xz or yz coordinate planes.

As a quick example, if we wish to rotate about the line parallel to the x-axis,
passing through the point (1, 2, 3), then C = (1, 0, 0).

13. Using the information learned in this section, do (or redo) Homework

problem 7 of Section 4.1.

See the corresponding problem from Section 4.1 for a full explanation.
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4.5 An Application of Matrix Multiplication to

Economics

There are no Homework Problems for this section.





Chapter 5

Determinants, Inverses,

and Cramer’s Rule

5.1 Determinants and Inverses from the

Adjoint Formula

1. Compute the transpose of the following matrices.

matrix transpose

(a)

[

1 3
−2 −5

] [

1 −2
3 −5

]

(b)





−2
0
3





[

−2 0 3
]

(c)

[

2 0 −1
2 −4 4

]





2 2
0 −4
−1 4





(d)





2 −4
−1 0
8 5





[

2 −1 8
−4 0 5

]

(e)





−1 0 1
0 1 2
1 2 1









−1 0 1
0 1 2
1 2 1





57
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(f)





−2 1 9
−4 2 8
−1 4 −5









−2 −4 −1
1 2 4
9 8 −5





(g)





0 −4 −8
4 0 −5
8 5 0









2 4 8
−4 0 5
−8 −5 3





(h)





−1 0 1 2
7 −1 2 −4
1 4 1 2













−1 7 1
0 −1 4
1 2 1
2 −4 2









(i)









0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0

















0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0









2. A matrix is symmetric if AT = A. Which of the matrices from problem 1
are symmetric?

The matrix from part (e) is symmetric.

3. A matrix is antisymmetric if AT = −A. Which of the matrices from problem
1 are anti-symmetric?

The matrix from part g) is anti-symmetric.

4. Compute the determinants of the following matrices:

(a) det

([

2 −3
8 −4

])

= 16 (b) det

([

2 −2
5 1

])

= 12

(c) det

([

2 −8
−4 16

])

= 0 (d) det













3

5
− 1

10

8 −4

3












= 0

(e) det













0 −2

3

5
1

10












=

10

3
(f) det









1 3 0
−4 16 3
0 −3 −5







 = −131
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(g) det









1 −3 1
9 −4 0
−3 5 2







 = 79 (h) det









2 −3 8
−4 0 1
5 −2 4







 = 5

(i) det









1 −3 −5
5 4 5
−1 3 5







 = 0

5. Compute the cofactor matrix to each of the matrices from problem 4.

matrix cofactor matrix

(a)

[

2 −3
8 −4

] [

−4 −8
3 2

]

(b)

[

2 −2
5 1

] [

1 −5
2 2

]

(c)

[

2 −8
−4 16

] [

16 4
8 2

]

(d)







3

5
− 1

10

8 −4

3







[

− 4
3 −8

1
10

3
5

]

(e)







0 −2

3

5
1

10







[

1
10 −5
2
3 0

]

(f)





1 3 0
−4 16 3
0 −3 −5









−71 −20 12
15 −5 3
9 −3 28





(g)





1 −3 1
9 −4 0
−3 5 2









−8 −18 33
11 5 4
4 9 23





(h)





2 −3 8
−4 0 1
5 −2 4









2 21 8
−4 −32 −11
−3 −34 −12





(i)





1 −3 −5
5 4 5
−1 3 5









5 −30 19
0 0 0
5 −30 19




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6. Compute the inverse matrix to each of the matrices from problem 4, using
the cofactor matrices from problem 5.

matrix matrix inverse

(a)

[

2 −3
8 −4

]





− 1
4

3
16

− 1
2

1
8





(b)

[

2 −2
5 1

]





1
12

1
6

− 5
12

1
6





(c)

[

2 −8
−4 16

]

not invertible

d)







3

5
− 1

10

8 −4

3






not invertible

(e)







0 −2

3

5
1

10







[

3
100

1
5

− 3
2 0

]

(f)





1 3 0
−4 16 3
0 −3 −5













71
131 − 15

131 − 9
131

20
131

5
131

3
131

− 12
131 − 3

131 − 28
131









(g)





1 −3 1
9 −4 0
−3 5 2













− 8
79

11
79

4
79

− 18
79

5
79

9
79

33
79

4
79

23
79









(h)





2 −3 8
−4 0 1
5 −2 4













2
5 − 4

5 − 3
5

21
5 − 32

5 − 34
5

8
5 − 11

5 − 12
5









(i)





1 −3 −5
5 4 5
−1 3 5



 not invertible
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7. Use your answers (if possible) to problem 6 to help solve the following
systems:

(a)
2x− 3y = 6
8x− 4y = 4

−→
[

2 −3
8 4

] [

x
y

]

=

[

6
4

]

[

x
y

]

=

[

− 1
4

3
16

− 1
2

1
8

]

[

6
4

]

−→
[

x
y

]

=

[

− 3
4

− 5
2

]

(b)
2x− 2y = 7
5x+ y = 8

−→
[

2 −2
5 1

] [

x
y

]

=

[

7
8

]

[

x
y

]

=

[

1
12

1
6

− 5
12

1
6

]

[

7
8

]

−→
[

x
y

]

=

[

23
12

− 19
12

]

(c)
2x− 3y = −1
8x− 4y = 3

−→
[

2 −3
8 −4

] [

x
y

]

=

[

−1
3

]

[

x
y

]

=





− 1
4

3
16

− 1
2

1
8





[

−1
3

]

−→
[

x
y

]

=

[

13
16

7
8

]

(d)
2x− 2y = 6
5x+ y = −5

−→
[

2 −2
5 1

] [

x
y

]

=

[

6
−5

]

[

x
y

]

=

[

1
12

1
6

− 5
12

1
6

]

[

6
−5

]

−→
[

x
y

]

=

[

− 1
3

− 10
3

]

(e)
x− 3y + z = 1
9x− 4y = 4

−3x+ 5y + 2z = 1
−→





1 −3 1
9 −4 0
−3 5 2









x
y
z



 =





1
4
1









x
y
z



 =









− 8
79

11
79

4
79

− 18
79

5
79

9
79

33
79

4
79

23
79













1
4
1



 −→





x
y
z



 =









40
79

11
79

72
79









(f)
2x− 3y + 8z = 3
−4x+ z = 5

5x− 2y + 4z = 6
−→





2 −3 8
−4 0 1
5 −2 4









x
y
z



 =





3
5
6









x
y
z



 =









2
5 − 4

5 − 3
5

21
5 − 32

5 − 34
5

8
5 − 11

5 − 12
5













3
5
6



 −→





x
y
z



 =









− 32
5

− 301
5

− 103
5








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(g)
x− 3y + z = 8
9x− 4y = −2

−3x+ 5y + 2z = 3
→





1 −3 1
9 −4 0
−3 5 2









x
y
z



=





8
−2
3









x
y
z



 =









− 8
79

11
79

4
79

− 18
79

5
79

9
79

33
79

4
79

23
79













8
−2
3



 →





x
y
z



 =









3

26

10









(h)
x− 3y − 5z = 2

5x+ 4y + 5z = −1
−x+ 3y + 5z = 0

→ no solution!

8. Determine values of λ such that the following matrices are not invertible.
The values of λ that make each of the following matrices singular are called
eigenvalues. In general, eigenvalues are found by solving for λ the equation
det (A− λIn) = 0, for A ∈ Rn×n.

(a)

[

3− λ 1
−1 1− λ

]

(b)

[

3− λ 1
1 3− λ

]

(c)





−λ 3 4
4 −4− λ −8
6 −9 −10− λ





The only root of the above polynomial is λ = 2.

b) det

([

3− λ 1
1 3− λ

])

= (3− λ) (3− λ)− 1 = λ2 − 6λ+ 8.

The two roots of the above polynomial are λ = 2 and λ = 4.

c) det









−λ 3 4
4 −4− λ −8
6 −9 −10− λ







 = −λ ((−4− λ) (−10− λ)− 72)

− 3 (4 (−10− λ) + 48) + 4 (−36− 6 (−4− λ))

= − (λ+ 18) (λ− 2)
2

The two roots of the above polynomial are λ = 2 and λ = −18.

9. A matrix A is diagonal if Ai,j = 0 for i 6= j. Entries on the diagonal are
not required to be nonzero, however, for this problem, assume that Ai,i 6= 0 for
1 ≤ i ≤ n. Show that the inverse matrix to A is a diagonal matrix with entries
1

Ai,i
.
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Let B be the matrix with diagonal entries
1

Ai,i

and zeros elsewhere. We

simply perform matrix multiplication AB and show that AB = In, for In the
n× n identity matrix:












A1,1 0 · · · 0

0 A2,2

...
...

. . . 0
0 · · · 0 An,n



























1
A1,1

0 · · · 0

0 1
A2,2

...

...
. . . 0

0 · · · 0 1
An,n















=













1 0 · · · 0

0 1
...

...
. . . 0

0 · · · 0 1













.

One can similarly show that BA = In. This by definition implies that
B = A−1.

We could have also argued that the product of two diagonal matrices is
another diagonal matrix whose entries along the diagonal are simply the prod-
ucts of the corresponding entries on the diagonals of A and B, which gives

Ai,i

1

Ai,i

= 1 for 1 ≤ i ≤ n.

10. A matrix A is upper triangular if Ai,j = 0 for i > j, and is lower triangular
of Ai,j = 0 for i < j. Is the inverse of a lower/upper triangular matrix D also
a lower/upper triangular matrix?

We know that the product of two upper triangular matrices is upper trian-
gular, the same goes with the product of two lower triangular matrices. The
identity matrix, by definition, is both upper triangular and lower triangular.

If E is the inverse of a triangular matrixD, then by definition, ED = DE =
In. If D is upper triangular, then Di,j = 0 for i > j, and

(ED)i,j =
n
∑

k=1

Ei,kDk,j

=

j
∑

k=1

Ei,kDk,j

Similarly,

(DE)i,j =
n
∑

k=1

Di,kEk,j

=

n
∑

k=j

Di,kEk,j .

For (DE)i,j = (ED)i,j = 0 for i 6= j, for an arbitrary upper triangular matrix
D, then to satisfy the above two conditions, we see that Ei,j = 0 for i > j.
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A similar argument can be made for lower triangular matrices.

11. Compute the inverses of the following matrices:

matrix matrix inverse

(a)





3 0 0
0 −4 0
0 0 −1













1
3 0 0

0 − 1
4 0

0 0 −1









(b)





−2 0 0
0 6 0
0 0 9













− 1
2 0 0

0 1
6 0

0 0 1
9









(c)





5
7 0 0
0 − 1

4 0
0 0 2

3













7
5 0 0

0 −4 0

0 0 3
2









12. A matrix A is orthogonal if its transpose is equal to its inverse, that is,
A−1 = AT . Explain why a symmetric or anti-symmetric or orthogonal matrix
must be square.

In order for there to be a direct relationship between a matrix and its
transpose or inverse, the matrix must be square. I.e. if AT = A, then their
dimensions must agree. Furthermore, inverse matrices exist for only square
matrices, hence orthogonal matrices must be square.

13. Let A be a square matrix. Show that A+ AT is symmetric while A −AT

is antisymmetric.

First we show that A+AT is symmetric, i.e.
(

A+AT
)T

= A+AT :

(

A+AT
)T

= AT +
(

AT
)T

= AT +A

= A+AT .

Next we show that A−AT is anti-symmetric, i.e.
(

A−AT
)T

= −
(

A−AT
)

:

(

A−AT
)T

= AT −
(

AT
)T

= AT −A

= −A+AT

= −
(

A−AT
)

.
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14. Let A be a square matrix. Show that A can be written as the sum of a
symmetric and an antisymmetric matrix.

Using problem 13, notice that

A =
1

2

(

A+AT
)

+
1

2

(

A−AT
)

,

so setting B = 1
2

(

A+AT
)

, and C = 1
2

(

A−AT
)

, we have that A = B + C
where B is symmetric, and C is anti-symmetric.

15. Let A be any matrix. Show that both AAT and ATA are symmetric ma-
trices.

First we show that
(

AAT
)T

= AAT :

(

AAT
)T

=
(

AT
)T

AT

= AAT

Secondly, we show that
(

ATA
)T

= ATA:

(

ATA
)T

= AT
(

AT
)T

= ATA

16. Explain why (AB)T = BTAT .

This is simply due to the interaction of transpose and matrix multiplication.
For instance, when we multiply AB, we take rows of A multiplied by columns
of B. So when we transpose, we need to multiply rows of B times columns of A.

17. Let n be any positive integer and A be any invertible square matrix. Show
that (An)−1 =

(

A−1
)n
.

If A is invertible, then AA−1 = In. Notice that AA = A2, and A−1A−1 =
(

A−1
)2

thus

A2
(

A−1
)2

= AAA−1A−1

= AInA
−1

= AA−1

= In,

thus
(

A−1
)2

=
(

A2
)−1

. Through an inductive argument, using the above steps

(for n = 2), it can easily be shown that(An)−1 =
(

A−1
)n

for any positive
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arbitrary integer n.

18. Let E be an elementary matrix. Does E always have an inverse, and if so,
is E−1 also an elementary matrix?

As we have discussed before, each type of elementary matrix is invertible,
and of the same type.

5.2 Determinants by Expanding Along Any Row

or Column

1. Compute the determinants of the following matrices by expanding along the
first row.

(a) det









1 −1 1
−1 −1 0
1 0 0







 = 1det

([

−1 0
0 0

])

− (−1) det

([

−1 0
1 0

])

+ 1det

([

−1 −1
1 0

])

= 1 (0)− (−1) (0) + 1 (1)

= 1

(b) det









2 −2 2
−2 −2 0
2 0 0







 = 2det

([

−2 0
0 0

])

− (−2) det

([

−2 0
2 0

])

+ 2det

([

−2 −2
2 0

])

= 2 (0)− (−2) (0) + 2 (4)

= 8

(c) det

















1 −1 1 0
0 1 −1 1
1 −1 −1 0
−1 1 0 1

















= 1det









1 −1 1
−1 −1 0
1 0 1








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− (−1) det









0 −1 1
0 −1 1
−1 0 1







+ 1det









0 1 1
1 −1 0
−1 1 1









+ 0det









0 1 −1
1 −1 −1
−1 1 0









= 1

(

1 det

([

−1 0
0 1

])

− (−1) det

([

−1 0
1 1

])

+1det

([

−1 −1
1 0

]))

− (−1)

(

0 det

([

−1 1
0 1

])

−(−1) det

([

0 1
−1 1

])

+ 1 det

([

0 −1
−1 0

]))

+ 1

(

0 det

([

−1 0
1 1

])

− 1 det

([

1 0
−1 1

])

+1det

([

1 −1
−1 1

]))

= 1 (1(−1)− (−1)(−1) + 1(1)) + 1 (0− (−1)(1) + 1(−1))

+ 1 (0− 1(1) + 1(0))

= −2

(d) det

















3 −2 2 1
1 −1 6 2
2 −1 0 0
−2 1 4 1

















= 3det









−1 6 2
−1 0 0
1 4 1









− (−2) det









1 6 2
2 0 0
−2 4 1







+ 2det









1 −1 2
2 −1 0
−2 1 1









− 1 det









1 −1 6
2 −1 0
−2 1 4









= 3

(

−1 det

([

0 0
4 1

])

− 6 det

([

−1 0
1 1

])

+2det

([

−1 0
1 4

]))

− (−2)

(

1 det

([

0 0
4 1

])

−6 det

([

2 0
−2 1

])

+ 2 det

([

2 0
−2 4

]))

+ 2

(

1 det

([

−1 0
1 1

])

− (−1) det

([

2 0
−2 1

])
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+2 det

([

2 −1
−2 1

]))

− 1

(

1 det

([

−1 0
1 4

])

−(−1) det

([

2 0
−2 4

])

+ 6det

([

2 −1
−2 1

]))

= 3 (−1(0)− 6(−1) + 2(−4)) + 2 (1(0)− 6(2) + 2(8))

+ 2 (1(−1) + 1(2) + 2(0))− 1 (1(−4) + 1(8) + 6(0))

= 0

(e) det

















1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

















= 1det









6 7 8
10 11 12
14 15 16









− 2 det









5 7 8
9 11 12
13 15 16







+ 3det









5 6 8
9 10 12
13 14 16









− 4 det









5 6 7
9 10 11
13 14 15









= 1

(

6 det

([

11 12
15 16

])

− 7 det

([

10 12
14 16

])

+8det

([

10 11
14 15

]))

− 2

(

5 det

([

11 12
15 16

])

−7 det

([

9 12
13 16

])

+ 8 det

([

9 11
13 15

]))

+ 3

(

5 det

([

10 12
15 16

])

− 6 det

([

9 12
13 16

])

+8det

([

9 10
13 14

]))

− 4

(

5 det

([

10 11
14 15

])

−6 det

([

9 11
13 15

])

+ 7det

([

9 10
13 14

]))

= 1 (6(−4)− 7(−8) + 8(−4))− 2 (5(−4)− 7(−12) + 8(−8))

+ 3 (5(−20)− 6(−12) + 8(−4))− 4 (5(−4)− 6(−8) + 7(−4))

= 0

(f) det

















3 6 −1 3
0 −1 6 7
0 0 4 8
0 0 0 1

















= 3det









−1 6 7
0 4 8
0 0 1








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− 6 det









0 6 7
0 4 8
0 0 1







− 1 det









0 −1 7
0 0 8
0 0 1









− 3 det









0 −1 6
0 0 4
0 0 0









= 3

(

−1 det

([

4 8
0 1

])

− 6 det

([

0 8
0 1

])

+7det

([

0 4
0 0

]))

− 6

(

0 det

([

4 8
0 1

])

−6 det

([

0 8
0 1

])

+ 7 det

([

0 4
0 0

]))

− 1

(

0 det

([

0 8
0 1

])

+ 1det

([

0 8
0 1

])

+7det

([

0 0
0 0

]))

− 3

(

0 det

([

0 5
0 0

])

+1det

([

0 4
0 0

])

+ 6det

([

0 0
0 0

]))

= 3 (−1(4)− 6(0) + 7(0))− 6 (0(4)− 6(0) + 7(0))

− 1 (0(0) + 1(0) + 7(0))− 3 (0(0) + 1(0) + 6(0))

= −12

2. Compute the determinants of the matrices from problem 1 by expanding
along the second column.

In the following solutions, we expand each matrix, and subsequent matrix
about the second column. It is not necessary to use the second column for each
smaller matrix.

(a) det









1 −1 1
−1 −1 0
1 0 0







 = −(−1) det

([

−1 0
1 0

])

+ (−1) det

([

1 1
1 0

])

− 0 det

([

−1 −1
1 0

])

= 1 (0) + (−1) (−1)− 0 (1)

= 1
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(b) det









2 −2 2
−2 −2 0
2 0 0







 = −(−2) det

([

−2 0
2 0

])

+ (−2) det

([

2 2
2 0

])

− 0 det

([

2 2
−2 0

])

= −(−2) (0) + (−2) (−4)− 0 (4)

= 8

(c) det

















1 −1 1 0
0 1 −1 1
1 −1 −1 0
−1 1 0 1

















= −(−1) det









0 −1 1
1 −1 0
−1 0 1









+ 1det









1 1 0
1 −1 0
−1 0 1







− (−1) det









1 1 0
0 −1 1
−1 0 1









+ 1det









1 1 0
0 −1 1
1 −1 0









= −(−1)

(

−(−1) det

([

1 0
−1 1

])

+ (−1) det

([

0 1
−1 1

])

−0 det

([

0 1
1 0

]))

+ 1

(

−1 det

([

1 0
−1 1

])

+(−1) det

([

1 0
−1 1

])

− 0 det

([

1 0
1 0

]))

− (−1)

(

−1 det

([

0 1
−1 1

])

+ (−1) det

([

1 0
−1 1

])

−0 det

([

1 0
0 1

]))

+ 1

(

−1 det

([

0 1
1 0

])

+(−1) det

([

1 0
1 0

])

− (−1) det

([

1 0
0 1

]))

= 1 (1(1)− 1(1)− 0(−1)) + 1 ((−1)(1)− 1(1)− 0(0))

+ 1 ((−1)(1)− 1(1)− 0(1)) + 1 ((−1)(−1)− 1(0) + 1(1))

= −2
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(d) det

















3 −2 2 1
1 −1 6 2
2 −1 0 0
−2 1 4 1

















= −(−2) det









1 6 2
2 0 0
−2 4 1









+ (−1) det









3 2 1
2 0 0
−2 4 1







− (−1) det









3 2 1
1 6 2
−2 4 1









+ 1det









3 2 1
1 6 2
2 0 0









= −(−2)

(

−6 det

([

2 0
−2 1

])

+ 0det

([

1 2
−2 1

])

−4 det

([

1 2
2 0

]))

+ (−1)

(

−2 det

([

2 0
−2 1

])

+0det

([

3 1
−2 1

])

− 4 det

([

3 1
2 0

]))

− (−1)

(

−2 det

([

1 2
−2 1

])

+ 6det

([

3 1
−2 1

])

−4 det

([

3 1
1 2

]))

+ 1

(

−2 det

([

1 2
2 0

])

+6det

([

3 1
2 0

])

− 0 det

([

3 1
1 2

]))

= 2 (−6(2) + 0(5)− 4(−4))− 1 (−2(2) + 0(5)− 4(−2))

+ 1 (−2(5) + 6(5)− 4(5)) + 1 (−2(−4) + 6(−2)− 0(5))

= 0

(e) det

















1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

















= −2 det









5 7 8
9 11 12
13 15 16









+ 6det









1 3 4
9 11 12
13 15 16







− 10 det









1 3 4
5 7 8
13 15 16









+ 14 det









1 3 4
5 7 8
9 11 12








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= −2

(

−7 det

([

9 12
13 16

])

+ 11 det

([

5 8
13 16

])

−15 det

([

5 8
9 12

]))

+ 6

(

−3 det

([

9 12
13 16

])

+11 det

([

1 4
13 16

])

− 15 det

([

1 4
9 12

]))

− 10

(

−3 det

([

5 8
13 16

])

+ 7det

([

1 4
13 16

])

−15 det

([

1 4
5 8

]))

+ 14

(

−3 det

([

5 8
9 12

])

+7det

([

1 4
9 12

])

− 11 det

([

1 4
5 8

]))

= −2 (−7(−12) + 11(−24)− 15(−12)) + 6 (−3(−12) + 11(−12)− 15(−24))

− 10 (−3(−24) + 7(−36)− 15(−12)) + 14 (−3(−12) + 7(−24)− 11(−12))

= 0

(f) det

















3 6 −1 3
0 −1 6 7
0 0 4 8
0 0 0 1

















= −6 det









0 6 7
0 4 8
0 0 1









+ (−1) det









3 −1 3
0 4 8
0 0 1







− 0 det









3 −1 3
0 6 7
0 0 1









+ 0det









3 −1 3
0 6 7
0 4 8









= −6

(

−6 det

([

0 8
0 1

])

+ 4det

([

0 7
0 1

])

−0 det

([

0 7
0 8

]))

+ (−1)

(

−(−1) det

([

0 8
0 1

])

+4det

([

3 3
0 1

])

− 0 det

([

3 3
0 8

]))

− 0

(

−(−1) det

([

0 7
0 1

])

+ 6det

([

3 3
0 1

])

−0 det

([

3 3
0 7

]))

+ 0

(

−(−1) det

([

0 8
0 1

])
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+6 det

([

3 3
0 8

])

− 0 det

([

3 3
0 7

]))

= −6 (−6(0) + 4(0)− 0(0))− 1 (1(0) + 4(3)− 0(24))

− 0 (1(0) + 6(3)− 0(21)) + 0 (1(0) + 6(24)− 0(21))

= −12

3. For each of the matrices in problem 1, which row or column would be the
best choice to expand upon in computing the determinant?

(a) row 3 or column 2 b) row 3 or column 2
(c) column 4 d) row 3
(e) it does not matter f) column 1

4. Compute the determinants of the matrices from problem 1 using the row or
column that you found in problem 3.

We will only do the matrices from parts (c), (d), and (f), as the matri-
ces from (a), (b), and (e) have already been done along the corresponding
row/column from the previous two problems.

(c) det

















1 −1 1 0
0 1 −1 1
1 −1 −1 0
−1 1 0 1

















= −0 det









0 1 −1
1 −1 −1
−1 1 0









+ 1det









1 −1 1
1 −1 −1
−1 1 0







− 0 det









1 −1 1
0 1 −1
−1 1 0









+ 1det









1 −1 1
0 1 −1
1 −1 −1









= 1

(

1 det

([

1 −1
−1 1

])

− (−1) det

([

1 −1
−1 1

])

+0det

([

1 −1
1 −1

]))

+ 1

(

1 det

([

1 −1
−1 −1

])

−0 det

([

−1 1
−1 −1

])

+ 1 det

([

−1 1
1 −1

]))

= 1 (1(0) + 1(0) + 0(0)) + 1 (1(−2)− 0(2) + 1(0))

= −2
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(d) det

















3 −2 2 1
1 −1 6 2
2 −1 0 0
−2 1 4 1

















= 2det









−2 2 1
−1 6 2
1 4 1









− (−1) det









3 2 1
1 6 2
−2 4 1







+ 0det









3 −2 1
1 6 2
−2 1 1









− 0 det









3 −2 2
1 −1 6
−2 1 4









= 2

(

−2 det

([

6 2
4 1

])

− 2 det

([

−1 2
1 1

])

+1det

([

−1 6
1 4

]))

+ 1

(

3 det

([

6 2
4 1

])

−2 det

([

1 2
−2 1

])

+ 1 det

([

1 6
−2 4

]))

= 2 (−2(−2)− 2(−3) + 1(−10)) + 1 (3(−2)− 2(5) + 1(16))

= 0

(f) det

















3 6 −1 3
0 −1 6 7
0 0 4 8
0 0 0 1

















= 3det









−1 6 7
0 4 8
0 0 1









− 0 det









6 −1 3
0 4 8
0 0 1







+ 0det









6 −1 3
−1 6 7
0 0 1









− 0 det









6 −1 3
−1 6 7
0 4 8









= 3

(

−1 det

([

4 8
0 1

])

− 0 det

([

6 7
0 1

])

+0det

([

6 7
4 8

]))

= 3 (−1(4)− 0(6) + 0(20))

= −12

5. Which of the matrices from problem 1 are singular?
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The matrices from parts (d) and (e) have determinant zero, and are there-
fore singular.

6. Prove that the determinant of any upper triangular matrix U or lower tri-
angular matrix L is simply the product of the diagonal elements: If

Ui,j = 0 for 1 ≤ j < i < n and Li,j = 0 for 1 ≤ i < j < n

then

det(U) =

n
∏

i=1

Ui,i and det(L) =

n
∏

i=1

Li,i

If U is upper triangular, then we simply expand along the first column:

det(U) =

n
∑

i=1

(−1)i+1Ui,1Mi,1.

But Ui,1 = 0 for i > 1, so we get that

det(U) = (−1)1+1U1,1M1,1 = U1,1M1,1.

Repeating this process inductively, notice that in computing the determinant
M1,1 we can expand along the first column, since it is also upper diagonal.
Therefore, we end up with

det(U) = U1,1

(

U2,2M̂2,2

)

,

where M̂2,2 is the determinant of the matrix corresponding U with its first two
rows and columns removed. We do this n times, we end up with

det(U) = U1,1U2,2 · · ·Un,n =

n
∏

i=1

Ui,i.

The same idea works for a lower triangular matrix L, except we always
expand along the first row.

7. Suppose that a matrix A can be written as A = LU , where L is lower
triangular and U is upper triangular, specifically given

A =





1 0 0
g 1 0
h i 1









a b c
0 d e
0 0 f





What is det(A)? This process of decomposing a matrix into the product of an
upper and lower triangular matrix is known as LU factorization.
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SinceA = LU , we get that det(A) = det(LU), but det(LU) = det(L)det(U).
Notice that det(L) = 1 and det(U) = adf , thus:

det(A) = det(LU)

= det(L)det(U)

= 1 (adf)

= adf.

8. Find values of λ such that the following systems of equations have a non-
trivial (nonzero) solution.

Clearly x = y = 0 is a solution to all of the systems, since each one is ho-
mogeneous. So we need to write each equation in matrix form and find values
of λ which make the determinant of the resulting matrix zero.

(a)
(6 − λ)x− 4y = 0
−2x+ (4− λ)y = 0

−→
[

6− λ −4
−2 4− λ

] [

x
y

]

=

[

0
0

]

det

([

6− λ −4
−2 4− λ

])

= (6− λ)(4 − λ)− 8

= λ2 − 10λ+ 16

= (λ− 2)(λ− 8)

Setting (λ− 2)(λ− 8) = 0 gives λ = 2, 8.

(b)
(−3− λ)x+ 5y = 0
7x+ (−1− λ)y = 0

−→
[

−3− λ 5
7 −1− λ

] [

x
y

]

=

[

0
0

]

det

([

−3− λ 5
7 −1− λ

])

= (−3− λ)(−1− λ)− 35

= λ2 + 4λ− 32

= (λ− 4)(λ+ 8)

Setting (λ− 4)(λ+ 8) = 0 gives λ = 4,−8.

(c)
(12− λ)x+ y = 0
−6x+ (5− λ)y = 0

−→
[

12− λ 1
−6 5− λ

] [

x
y

]

=

[

0
0

]

det

([

12− λ 1
−6 5− λ

])

= (12− λ)(5 − λ) + 6

= λ2 − 17λ+ 66

= (λ− 6)(λ− 11)
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Setting (λ− 6)(λ− 11) = 0 gives λ = 6, 11.

(d)
(2− λ)x+ 8y = 0
6x+ (4− λ)y = 0

−→
[

2− λ 8
6 4− λ

] [

x
y

]

=

[

0
0

]

det

([

2− λ 8
6 4− λ

])

= (2− λ)(4 − λ)− 48

= λ2 − 6λ− 40

= (λ− 10)(λ+ 4)

Setting (λ− 10)(λ+ 4) = 0 gives λ = 10,−4.

9. For each system from problem 8, find the corresponding nontrivial solutions
for each value of λ found.

(a) For λ = 2 we have the system
4x− 4y = 0
−2x+ 2y = 0

. Notice that the first

equation is just twice the second, therefore, the solution is simply all points
which satisfy one of the equations, so we choose the first: 4x−4y = 0, or x = y.
Thus, the solution is the set of all points of the form (x, x) or (y, y).

For λ = 8, we have the system
−2x− 4y = 0
−2x− 4y = 0

. Notice that both of these

equations are exactly the same, with solution x = −2y. Thus the solution is
the set of all points of the form (−2y, y) or

(

x,− 1
2x

)

.

(b) For λ = 4 we have the system
−7x+ 5y = 0
7x− 5y = 0

. Notice that the first

equation is just minus the second, therefore, the solution is simply all points
which satisfy one of the equations, so we choose the first: −7x + 5y = 0, or
y = 7

5x. Thus, the solution is the set of all points of the form (x, 7
5x) or (

5
7y, y).

For λ = −8, we have the system
5x+ 5y = 0
7x+ 7y = 0

. Notice that both of these

equations are exactly the same: x + y = 0, after dividing through by 5 and 7,
respectively. The solution is x = −y, and therefore the points which satisfy the
equation are of the form (x,−x) or (−y, y).

(c) For λ = 6 we have the system
6x+ y = 0
−6x− y = 0

. Notice that the first equa-

tion is just minus the second, therefore, the solution is simply all points which
satisfy one of the equations, so we choose the first: 6x + y = 0, or y = −6x.
Thus, the solution is the set of all points of the form (x,−6x) or (− 1

6y, y).
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For λ = 11, we have the system
x+ y = 0

−6x− 6y = 0
. Notice that both of these

equations are exactly the same: x + y = 0, after dividing through by 5 and 7,
respectively. The solution is x = −y, and therefore the points which satisfy the
equation are of the form (x,−x) or (−y, y).

(d) For λ = 10 we have the system
−8x+ 8y = 0
6x− 6y = 0

. Yet again, these equa-

tions are multiples of each other, both of the form x − y = 0. The solution is
the set of all points of the form (x, x) or (y, y).

For λ = −4, we have the system
6x+ 8y = 0
6x+ 8y = 0

. Notice that both of these

equations are exactly the same. The solution is x = − 4
3y or y = − 3

4x. The
points which satisfy the equation are (x,− 3

4x) or (− 4
3y, y).

10. Let c be a scalar and A be a k × l matrix. Explain why cA = DcA, where
Dc is the k × k diagonal matrix with all c’s on its diagonal.

The following string of inequalities shows how this is true:

A = IkA

cA = cIkA

cA = DcA.

11. Use your argument from problem 10 to show that det(cA) = cndet(A) if A
is any n× n matrix and c is any scalar.

Since we have cA = DcA, then

det (cA) = det (DcA)

= det (Dc) det (A)

= cndet(A).

12. Show that det(A−1) =
1

det(A)
.

If A is an n × n invertible matrix, then A−1A = In, thus det
(

A−1A
)

=
det (In), but det (In) = 1, therefore, we have

det
(

A−1A
)

= 1

det
(

A−1
)

det (A) = 1.

Solving the last line of the above string of equations for det(A−1) gives det(A−1) =
1

det(A)
.
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13. Explain why det(AT ) = det(A).

This must be true since determinants can be taken along any row or column.

14. Let A be an n× n matrix with det(A) 6= 0.

(a) Find a formula for det(C) in terms of n and det(A), where C is the
cofactor matrix of A.

If we start with equation (5.10) and then multiply both sides by det(A), we
get

det(A)A−1 = CT .

Taking the determinant of both sides (and using the fact that det(CT ) =
det(C)) gives

det
(

det(A)A−1
)

= det(C)

det
(

det(A)InA
−1

)

= det(C)

det (det(A)In) det
(

A−1
)

= det(C)

(det(A))n
1

det(A)
= det(C)

(det(A))
n−1

= det(C).

Therefore, we can conclude that

det(C) = (det(A))n−1 .

(b) Find a formula for C−1 in terms of A and n if C is A’s cofactor matrix.

We start with the simple relation CT = det(A)A−1 and perform some sim-
ple matrix manipulations:

CT = det(A)A−1

(

CT
)T

=
(

det(A)A−1
)T

C = det(A)
(

A−1
)T

C = det(A)
(

AT
)−1

C C−1 = det(A)
(

AT
)−1

C−1

In = det(A)
(

AT
)−1

C−1

1

det(A)
In =

(

AT
)−1

C−1
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AT 1

det(A)
In = AT

(

AT
)−1

C−1

AT 1

det(A)
In = In C−1

1

det(A)
AT = C−1.

Therefore, we can conclude that

C−1 =
1

det(A)
AT .

15. Compute the determinants of each of the three types of n× n elementary
matrices.

Section 5.3 has more details on the answer to this problem.

First we consider type I elementary matrices, which is the identity matrix
with two rows swapped. Clearly if no rows were swapped, the determinant
would be 1. Using the fact that when we expand along a row or column we
must multiply each term by (−1)i+j , it should be reasonable to think that the
determinant of a type I elementary matrix should be -1. This is true since if
we choose one of the rows that were swapped to expand along, we are off by
a minus sign (as when we expand along the original row of the identity matrix).

Next, we consider type II elementary matrices, which consists of multiply-
ing one row of the identity matrix by a scalar k. Notice that this matrix is still
diagonal, and hence its determinant is the product of the diagonal entries, all
of which are one except for the one with value k. Therefore, the determinant
of a type II matrix is k, where k is the scalar used to multiply one row of the
matrix in question.

Finally, type III matrices: multiplying a row by a non-zero number c and
adding it to another row. Once again, a type III matrix is either upper triangu-
lar or lower triangular, with ones only on the diagonal. Hence, the determinant
is equal to one and is independent of the scalar c.

16. Let P (x0, y0) and Q(x1, y1) be two distinct points of R2.

(a) Show that the line through these two points has the equation

det









x0 y0 1
x1 y1 1
x y 1







 = 0.
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Clearly, if we wish to fit the line points P and Q to the line Ax+By+C = 0,
we would end up with the first two rows of the matrix given above. If we assume
that x and y are arbitrary points on the line, then we also get the last row of
the above matrix. Taking a determinant gives

det









x0 y0 1
x1 y1 1
x y 1







 = x0 y1 − x0 y − x1 y0 + x1 y + x y0 − x y1.

From algebra, we know that we can express the equation of a line as

y − y0 = m(x− x0),

where m =
y1 − y0
x1 − x0

. Thus, we have

y − y0 =
y1 − y0
x1 − x0

(x− x0)

(y − y0)(x1 − x0) = (y1 − y0)(x− x0)

y x1 − y x0 − y0 x1 + y0x0 = y1 x− y1 x0 − y0 x+ y0 x0

Notice that after canceling the y0 x0 terms from both sides of the last equation
above, we can move all the terms to the left hand side, and rearrange to get
the answer in the order x0 y1 − x0 y − x1 y0 + x1 y + x y0 − x y1, which is the
determinant given above.

(b) Use the formula in part (a) to find the equation of the line through the
two points P (−7, 4) and Q(9,−5).

Using the formula from part a) gives:

det









−7 4 1
9 −5 1
x y 1







 = −1 + 16y + 9x,

Thus, the equation of the line is 9x+ 16y − 1 = 0.

17. Let P (x0, y0, z0), Q(x1, y1, z1), and R(x2, y2, z2) be three noncollinear
points of R3.

(a) Show that the plane through these three points has the equation

det

















x0 y0 z0 1
x1 y1 z1 1
x2 y2 z2 1
x y z 1

















= 0
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This problem is very similar to that of 16 a). The standard equation for a
plane is Ax+By+Cz+D = 0. Three points uniquely define a plane, and the
columns (from left to right) of the above matrix correspond to the constants A,
B, C and D. The fourth row corresponds to any other arbitrary point (x, y, z)
which lies on the plane.

det

















x0 y0 z0 1
x1 y1 z1 1
x2 y2 z2 1
x y z 1

















= [y0 (z2 − z1) + y1 (z0 − z2) + y2 (z1 − z0)]x

+ [z0 (x2 − x1) + z1 (x0 − x2) + z2 (x1 − x0)] y

+ [x0 (y2 − y1) + x1 (y0 − y2) + x2 (y1 − y0)] z

+ x0 (y1 z2 − y2 z1) + x1 (y2 z0 − y0 z2)

+ x2 (y0 z1 − y1 z0)

= Ax+By + Cz +D.

Setting Ax + By + Cz +D = 0 gives the desired result, thus, we arrive at
the fact that the determinant formula given above is a plane passing through
the three points P , Q and R.

(b) Use the formula in part (a) to find the equation of the plane through
the three points P (−7, 4, 2), Q(9,−5, 8), and R(6, 11,−3).

Using the formula from part a) gives:

det

















−7 4 2 1
9 −5 8 1
6 11 −3 1
x y z 1

















= 1069− 229z − 158y − 3x

Thus, the equation of the plane is −3x− 158y− 229z + 1069 = 0.

18. Let P (x0, y0), Q(x1, y1), and R(x2, y2) be three noncollinear points of R2.

(a) Show that the circle through these three points has the equation

det





























x2
0 + y20 x0 y0 1

x2
1 + y21 x1 y1 1

x2
2 + y22 x2 y2 1

x2 + y2 x y 1





























= 0

First, we realize that the equation of the circle is given by (x− xc)
2 + (y−

yc)
2 = r2, where (xc, yc) is the center of the circle. Expanding this, we can
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express this as A(x2 + y2) + Bx + Cx + D = 0, for constants A, B, C and
D. Plugging in the points (xk, yk), for 1 ≤ k ≤ 3, into the equation of the
circle gives the first three rows of the above matrix. Then assuming the fourth
arbitrary point (x, y) lies on the circle, we end up with the final row above.

(b) Use the formula in part (a) to find the equation of the circle through
the three points P (−7, 4), Q(9,−5), and R(6, 11).

Using the formula from part a) gives:

det

















65 −7 4 1
106 9 −5 1
157 6 11 1

x2 + y2 x y 1

















= −229
(

x2 + y2
)

+1115 x+939 y+18934.

Thus, the equation of the circle is 229
(

x2 + y2
)

−1115 x−939 y−18934 = 0.

19. Can you revise problem 18 in order to find a determinant equation for a
general conic section passing through a certain number of points in the xy-
plane? If yes, then test your formula on a set of points. If no, then explain
why this is impossible.

If we wish to fit the points to a conic, then we start with the form Ax2 +
Bxy + Cy2 + Dx + Ey + F = 0, pick 5 points (xk, yk), 1 ≤ k ≤ 5 and an
arbitrary point (x, y) to get the matrix determinant equation:

det





















































x2
0 x0 y0 y20 x0 y0 1

x2
1 x1 y1 y21 x1 y1 1

x2
2 x2 y2 y22 x2 y2 1

x2
3 x3 y3 y23 x3 y3 1

x2
4 x4 y4 y24 x4 y4 1

x2 x y y2 x y 1





















































= 0.

Consider the set of points

{(−1, 2), (0, 3), (1, 1), (2, 4), (−2, 3)} ,
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and corresponding matrix equation

det





















































1 −2 4 −1 2 1

0 0 9 0 3 1

1 1 1 1 1 1

4 8 16 2 4 1

4 −6 9 −2 3 1

x2 x y y2 x y 1





















































= 0.

Computing this determinant and setting it to zero gives the conic

28 x2 − 8 x y − 86 y2 + 80 x+ 394 y− 408 = 0.

We graph both the points and the conic together in the figure below.

0

2

4

y

–4 –2 2 4

x

Figure 5.1: The five points and the conic section which passes through them
all.

20. Can you revise problem 18 in order to find a determinant equation for a
sphere passing through a certain number of points in space? If yes, then test
your formula on a set of points. If no, then explain why this is impossible.

A sphere centered at the origin, with radius r is given by the equation

x2 + y2 + z2 = r2.

However, if this sphere has a center at (xc, yc, zz) instead, the equation becomes

(x− xc)
2 + (y − yc)

2 + (z − zc)
2 = r2.

Expanding this out, we end up with an equation of the form

A(x2 + y2 + z2) +Bx+ Cy +Dz + E = 0.



5.3 Determinants Found by Triangularizing Matrices 85

21. Verify that any 2 × 2 or 3 × 3 matrix A that has two identical rows (or
columns) must have det(A) = 0.

5.3 Determinants Found by Triangularizing

Matrices

1. Compute the determinants of the following matrices.

(a) det









1 −1 1
0 −1 0
0 0 1







 = (1)(−1)(1) = −1

(b) det

















1 0 0 0
9 1 0 0
3 6 1 0
12 −1 −1 1

















= (1)(1)(1)(1) = 1

(c) det

















1 −13 −5 −3
0 −4 3 1
0 0 5 7
0 0 0 9

















= (1)(−4)(5)(9) = −180

(d) det

























3 0 0 0 0
1 1 0 0 0
2 9 7 0 0
−2 8 4 4 0
6 −2 −5 2 1

























= (3)(1)(7)(4)(1) = 84

(e) det

















3 3 0 0
1 5 0 0
0 0 −7 3
0 0 4 8

















= (15− 3)(−56− 12) = −816
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(f) det

























3 8 0 0 0
−2 7 0 0 0
0 0 1 0 0
0 0 0 5 −8
0 0 0 3 6

























= (21 + 16)(1)(30 + 24) = 1998

2. Compute the determinants of the following matrices by converting each to
upper triangular form using only type III elementary matrices.

(a) E1 =





1 0 0
−2 1 0
0 0 1



 E2 =





1 0 0
0 1 0
4 0 1



 E3 =







1 0 0
0 1 0

0 − 4
9 1







E3E2E1





1 −1 3
2 7 7
−4 8 1



 =







1 −1 3
0 9 1

0 0 113
9







det









1 −1 3
2 7 7
−4 8 1







 = det













1 −1 3
0 9 1

0 0 113
9













= (1)(9)

(

113

9

)

= 113

(b) E1 =















1 0 0 0

−9 1 0 0

0 0 1 0

0 0 0 1















E2 =















1 0 0 0

0 1 0 0

−3 0 1 0

0 0 0 1















E3 =















1 0 0 0

0 1 0 0

0 0 1 0

−12 0 0 1















E4 =















1 0 0 0

0 1 0 0

0 3
14 1 0

0 0 0 1

















5.3 Determinants Found by Triangularizing Matrices 87

E5 =















1 0 0 0

0 1 0 0

0 0 1 0

0 − 13
14 0 1















E6 =















1 0 0 0

0 1 0 0

0 0 1 0

0 0 3
187 1















E6E5E3E2E1









1 1 −2 3
9 −5 7 8
3 6 2 −3
12 −1 −1 1









=















1 1 −2 3

0 −14 25 −19

0 0 187
14 − 225

14

0 0 0 − 3294
187















det

















1 1 −2 3
9 −5 7 8
3 6 2 −3
12 −1 −1 1

















= det





























1 1 −2 3

0 −14 25 −19

0 0 187
14 − 225

14

0 0 0 − 3294
187





























= (1)(−14)

(

187

14

)(

−3294

187

)

= 3294

(c) E1 =















1 0 0 0

−3 1 0 0

0 0 1 0

0 0 0 1















E2 =















1 0 0 0

0 1 0 0

−2 0 1 0

0 0 0 1















E3 =















1 0 0 0

0 1 0 0

0 0 1 0

−8 0 0 1















E4 =















1 0 0 0

0 1 0 0

0 − 9
5 1 0

0 0 0 1














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E5 =















1 0 0 0

0 1 0 0

0 0 1 0

0 − 23
5 0 1















E6 =















1 0 0 0

0 1 0 0

0 0 1 0

0 0 − 4608
581 1















det

















1 4 9 5
3 7 −7 3
2 −11 5 −1
8 9 0 2

















= det





























1 4 9 5

0 −5 −34 −12

0 0 581
5

173
5

0 0 0 − 4608
581





























= (1)(−5)

(

581

5

)(

−4608

581

)

= 4608

3. Compute the determinants of the matrices from problem 2 by converting
each to lower triangular form using only type III elementary matrices.

(a) E1 =





1 0 0
0 1 −7
0 0 1



 E2 =





1 0 −3
0 1 0
0 0 1



 E3 =







1 − 25
49 0

0 1 0

0 0 1







E3E2E1





1 −1 3
2 7 7
−4 8 1



 =







− 113
49 0 0
30 −49 0

−4 8 1







det









1 −1 3
2 7 7
−4 8 1







 = det













− 113
49 0 0
30 −49 0

−4 8 1













= −113

9
(−49)(1) = 113

(b) E1 =















1 0 0 0

0 1 0 0

0 0 1 3

0 0 0 1















E2 =















1 0 0 0

0 1 0 −8

0 0 1 0

0 0 0 1














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E3 =















1 0 0 −3

0 1 0 0

0 0 1 0

0 0 0 1















E4 =















1 0 0 0

0 1 15 0

0 0 1 0

0 0 0 1















E5 =















1 0 1 0

0 1 0 0

0 0 1 0

0 0 0 1















E6 =















1 − 7
48 0 0

0 1 0 0

0 0 1 0

0 0 0 1















E6E5E3E2E1









1 1 −2 3
9 −5 7 8
3 6 2 −3
12 −1 −1 1









=















− 549
8 0 0 0

498 48 0 0

39 3 −1 0

12 −1 −1 1















det

















1 1 −2 3
9 −5 7 8
3 6 2 −3
12 −1 −1 1

















= det





























− 549
8 0 0 0

498 48 0 0

39 3 −1 0

12 −1 −1 1





























= −549

8
(48)(−1)(1)

= 3294

(c) E1 =















1 0 0 0

0 1 0 0

0 0 1 1
2

0 0 0 1















E2 =















1 0 0 0

0 1 0 − 3
2

0 0 1 0

0 0 0 1














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E3 =















1 0 0 − 5
2

0 1 0 0

0 0 1 0

0 0 0 1















E4 =















1 0 0 0

0 1 7
5 0

0 0 1 0

0 0 0 1















E5 =















1 0 − 9
5 0

0 1 0 0

0 0 1 0

0 0 0 1















E6 =















1 − 17
39 0 0

0 1 0 0

0 0 1 0

0 0 0 1















det

















1 4 9 5
3 7 −7 3
2 −11 5 −1
8 9 0 2

















= det





























− 384
13 0 0 0

− 3
5 − 78

5 0 0

6 − 13
2 5 0

8 9 0 2





























= −384

13

(

−78

5

)

(5)(2)

= 4608

4. Compute the determinants of the following matrices by converting each to
upper triangular form:

(a) Note that there was one row swap in the above calculation.

det

















2 −1 3 1
4 −2 5 5
3 7 −1 4
6 2 2 −8

















= −det

















2 −1 3 1
0 17

2 − 11
2

5
2

0 0 −1 3
0 0 0 − 404

17

















= −404

(b) Note that there were two row swaps in the above calculation.

det

















1 −2 0 4
−1 2 1 3
2 −4 0 5
5 −3 2 1

















= det

















1 −2 0 4
0 7 2 −19
0 0 1 7
0 0 0 −3

















= −21
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5. Verify your answers to problem 4 by computing the determinant via the
method of expanding along a row or column.

Answers will vary depending upon which row/column you expand along,
but the answers will agree with those of problem 4.

6. Let A and B be two square matrices of any two sizes.

(a) Show that the square diagonal block matrix C =

[

A 0
0 B

]

for appro-

priate size 0 matrices has det(C) = det(A)det(B).

This is obvious upon expanding along the first column (or row) of C.

(b) Explain why

C−1 =

[

A−1 0
0 B−1

]

As a consequence, what is the inverse of a diagonal matrix D?

First, let us consider the product:
[

A 0
0 B

] [

A−1 0
0 B−1

]

If you perform the multiplication entry by entry in the A square, or in the B
square, notice that you have the definition of the inverse to A, and B, respec-
tively. Furthermore, if you select an entry off diagonal in the resulting matrix,
it is zero due to the construction of the matrix C itself.

As a result, the inverse to a diagonal matrix is itself a diagonal matrix,
whose diagonal entries are the multiplicative reciprocals of the diagonal entries
of D.

7. Let A be a square n×nmatrix. If A can be lower/upper triangularized using
only type III elementary row operations, then how many of these operations
do you expect to need? Give you answer as simply as possible.

Since there are n2 entries, and thus
n2 − n

2
entries above/below the diago-

nal, there will be at most
n2 − n

2
type III elementary row operations to reduce

the matrix to lower/upper triangularize the matrix.

8. Give an example of each type of elementary matrix for size 3 × 3 and give
their inverses.
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EI =





1 0 0
0 0 1
0 1 0



 , E−1
I =





1 0 0
0 0 1
0 1 0





EII =





1 0 0
0 k 0
0 0 1



 , E−1
II =





1 0 0
0 1/k 0
0 0 1





EIII =





1 0 0
n 1 0
0 0 1



 , E−1
III =





1 0 0
−n 1 0
0 0 1





9. If A is a product of elementary matrices of size n× n, then is A invertible
or not, and why?

Yes, A must be invertible, since each elementary matrix is invertible.

10. Let A be a square matrix with det(A) 6= 0. Can you find A−1 by succes-
sively applying elementary matrices to A in order to produce the n×n identity
matrix In? If yes, explain how. If no, explain why not.

Indeed you can. By first making the matrix upper triangular, and then
lower triangular, you create a diagonal matrix, whose inverse we know from
problem 6.

11. For a square matrix A, explain why rref(A) will be the identity matrix
unless rref(A) contains at least one row of all zeroes.

This follows directly from problem 10. Elementary row operations can be
used to get the matrix to the identity if A is invertible. If A is not invertible,
elementary row operations can be used to remove all rows which are linear
combinations of other rows. This will yield at least one row of all zeros.
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5.4 LU Factorization

1. Solve the following systems by forward or backward substitution:

(a) {y1 = −1, y2 = 0, y3 = 4}

(b)

{

x1 = − 1

16
, x2 = −9

8
, x3 = 0

}

(c)

{

x1 =
41

2
, x2 =

327

20
, x3 = −9

2
, x4 = −1

5

}

(d) {y1 = 1, y2 = 2, y3 = −11, y4 = 68}

2. Compute the LU factorization of the following matrices.

(a)









1 3 1 −7
−2 1 −2 6
0 8 1 −1
−2 1 0 −1









=









1 0 0 0
−2 1 0 0
0 8

7 1 0
−2 1 2 1

















1 3 1 −7
0 7 0 −8
0 0 1 57

7
0 0 0 − 163

7









(b)









8 −4 −8 −9
4 1 2 8
−1 0 1 −1
0 −2 0 −9









=









1 0 0 0
1
2 1 0 0

− 1
8 − 1

6 1 0
0 − 2

3 4 1

















8 −4 −8 −9
0 3 6 25

2
0 0 1 − 1

24
0 0 0 − 1

2









(c)









−1 0 −3 5
−2 2 7 −9
3 −5 −2 10
6 8 −1 5









=









1 0 0 0
2 1 0 0
−3 − 5

2 1 0
−6 4 − 142

43 1

















−1 0 −3 5
0 2 13 −19
0 0 43

2 − 45
2

0 0 0 1578
43









(d)









1 0 0 0
−2 1 0 0
3 2 1 0
−4 −3 5 1









=









1 0 0 0
−2 1 0 0
3 2 1 0
−4 −3 5 1

















1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









(e)









1 −3 5 8
−2 1 −7 −2
3 0 1 −7
0 −3 5 1









=









1 0 0 0
−2 1 0 0
3 − 9

5 1 0
0 3

5 − 16
43 1

















1 −3 5 8
0 −5 3 14
0 0 − 43

5 − 29
5

0 0 0 − 411
43









(f)









1 −6 8 −1
0 1 −5 −2
3 0 1 −3
−4 −3 5 1









=









1 0 0 0
0 1 0 0
3 18 1 0
−4 −27 − 98

67 1

















1 −6 8 −1
0 1 −5 −2
0 0 67 36
0 0 0 − 291

67









3. Compute the determinant of each of the matrices from problem 2.



94 Chapter 5. Determinants, Inverses, and Cramer’s Rule

(a) det

















1 3 1 −7
−2 1 −2 6
0 8 1 −1
−2 1 0 −1

















= det

















1 3 1 −7
0 7 0 −8
0 0 1 57

7
0 0 0 − 163

7

















= −163

(b) det

















8 −4 −8 −9
4 1 2 8
−1 0 1 −1
0 −2 0 −9

















= det

















8 −4 −8 −9
0 3 6 25

2
0 0 1 − 1

24
0 0 0 − 1

2

















= −12

(c) det

















−1 0 −3 5
−2 2 7 −9
3 −5 −2 10
6 8 −1 5

















= det

















−1 0 −3 5
0 2 13 −19
0 0 43

2 − 45
2

0 0 0 1578
43

















= −1578

(d) det

















1 0 0 0
−2 1 0 0
3 2 1 0
−4 −3 5 1

















= det

















1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

















= 1

(e) det

















1 −3 5 8
−2 1 −7 −2
3 0 1 −7
0 −3 5 1

















= det

















1 −3 5 8
0 −5 3 14
0 0 − 43

5 − 29
5

0 0 0 − 411
43

















= −411

(f) det

















1 −6 8 −1
0 1 −5 −2
3 0 1 −3
−4 −3 5 1

















= det

















1 −6 8 −1
0 1 −5 −2
0 0 67 36
0 0 0 − 291

67

















= −291

4. Solve the following systems of equations by LU factorization, performing
forward and backward substitution.

(a) {x1 = −34, x2 = 49, x3 = 12, x4 = 0}
(b) {x1 = 41, x2 = 14, x3 = −3, x4 = 9}
(c) {x1 = −39, x2 = 75, x3 = −67, x4 = 7}

5.5 Inverses from rref

1. Use the method of row reducing (A|In) to compute the inverse to each of
the following matrices:
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(a)





1 −1 2
−1 3 −1
1 2 −2





−1

=





4
11 − 2

11
5
11

3
11

4
11

1
11

5
11

3
11 − 2

11





(b)





3 −4 1
3 3 −1
1 2 −2





−1

=





4
29

6
29 − 1

29
− 5

29
7
29 − 6

29
− 3

29
10
29 − 21

29





(c)





2 3 1
−1 −5 2
1 −7 2





−1

=





1
8 − 13

32
11
32

1
8

3
32 − 5

32
3
8

17
32 − 7

32





(d)





−1 2 1
1 −2 1
0 1 0





−1

=





− 1
2

1
2 2

0 0 1
1
2

1
2 0





(e)





1 3 −5
1 4 6
2 3 7





−1

=





1
5 − 18

25
19
25

1
10

17
50 − 11

50
− 1

10
3
50

1
50





(f)





−1 2 0
5 0 2
−4 2 0





−1

=





1
3 0 − 1

3
2
3 0 − 1

6
− 5

6
1
2

5
6





(g)









−1 2 1 0
−2 2 1 1
−3 −1 2 1
2 −5 6 1









−1

=









− 4
45

4
15 − 17

45
1
9

1
5

1
5 − 1

5 0
19
45 − 2

15
1
45

1
9

− 53
45

19
15 − 17

45
1
9









(h)









1 3 −5 2
1 4 6 0
2 3 7 1
−3 6 −4 3









−1

=









41
147

3
49

5
147 − 29

147
29
294

16
49 − 61

294
1

294
− 11

98 − 3
49

13
98

3
98

− 10
147 − 33

49
92
147

25
147









(i)









−1 2 0 1
3 0 2 2
−4 2 1 −3
0 2 0 4









−1

=









16
17

3
17 − 6

17 − 10
17

22
17

2
17 − 4

17 − 19
34

− 13
17

5
17

7
17

6
17

− 11
17 − 1

17
2
17

9
17









2. In this section, it was shown that row reducing the matrix (A|I2) resulted
in the correct value of A−1. The first step in this process required that a 6= 0.
Repeat this procedure, but this time assume that a = 0. You may assume that
b 6= 0 and c 6= 0. Remember that you cannot swap rows.

The simplest thing to do would be to add 1
c
times row two to row one, and
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then proceed similar to the book.

3. If A is square but has no inverse, then what does rref (A|In) produce and
how does it tell us that A has no inverse? Give some examples.

You will not be able to reduce to rref (A|In) to rref
(

In|A−1
)

, as the left
square matrix will not be In. As examples:

rref

([

1 2 1 0
2 4 0 1

])

=

[

1 2 0 1
2

0 0 1 − 1
2

]

rref









1 2 1 1 0 0
2 3 2 0 1 0
−1 −2 −1 0 0 1







 =





1 0 1 0 2 3
0 1 0 0 −1 −2
0 0 0 1 0 1





4. Explain why if E is an elementary matrix, E−1 is also.

Clearly, each elementery row operation is reversible, and as a result, the ma-
trix representation of each elementary row operation must be invertible. For
instance, see problem 8 from the previous section.

5. Explain why for any square matrix A that is invertible, A−1 is a product of
elementary matrices.

Assume A is invertible, by problem 10 of the previous section we know
that A can be transformed into the identity matrix through multiplication by
elementary matrices E1 through En. E.g.

EnEn−1 · · ·E2E1A = I,

Notice that from the above formulation A−1 = EnEn−1 · · ·E2E1, hence A
−1 is

a product of elementary matrices.

6. Explain why for any square matrix A that is invertible, A is a product of
elementary matrices.

Under the same assumptions as the previous problem, we have

EnEn−1 · · ·E2E1A = I,

which gives (after solving for A):

A = E−1
1 E−1

2 · · ·E−1
n−1E

−1
n

Thus A is a product of elementary matrices.
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7. For A, the matrix in problem 1 part (c), write out both A and A−1 as
products of elementary matrices.

If we start with A =





2 3 1
−1 −5 2
1 −7 2



, then we get

E9E8 · · ·E2E1A = I3,

where

E1 =





1
2 0 0
0 1 0
0 0 1



 E2 =





1 0 0
1 1 0
0 0 1



 E3 =





1 0 0
0 1 0
−1 0 1





E4 =





1 0 0
0 − 2

7 0
0 0 1



 E5 =





1 0 0
0 1 0
0 17

2 1



 E6 =





1 0 0
0 1 0
0 0 − 7

32





E7 =





1 0 0
0 1 5

7
0 0 1



 E8 =





1 0 − 1
2

0 1 0
0 0 1



 E9 =





1 − 3
2 0

0 1 0
0 0 1





Notice that there are many different orders in which one could get the
identity matrix, we have chosen one path. Using these matrices, we have

A−1 = E9E8 · · ·E2E1, A = E−1
1 E−1

2 · · ·E−1
8 E−1

9 ,

where the inverse to each elementary matrix (see problem 8 from section 5.3)
is given below:

E−1
1 =





2 0 0
0 1 0
0 0 1



 E−1
2 =





1 0 0
−1 1 0
0 0 1



 E−1
3 =





1 0 0
0 1 0
1 0 1





E−1
4 =





1 0 0
0 − 7

2 0
0 0 1



 E−1
5 =





1 0 0
0 1 0
0 − 17

2 1



 E−1
6 =





1 0 0
0 1 0
0 0 − 32

7





E−1
7 =





1 0 0
0 1 5

7
0 0 1



 E−1
8 =





1 0 1
2

0 1 0
0 0 1



 E−1
9 =





1 3
2 0

0 1 0
0 0 1





8. Is Theorem 5.5.1 still true if we replace “for all B” with “for at least one B”?

No. Using the properties of the biconditional, the following statement
should be true:
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If there exists a unique solution to the system AX = B for at least one B,
then det(A) 6= 0.

However, if we let B be the zero column matrix, then X also being the zero
column matrix will work regardless of A, even if A is not invertible and thusly
det(A) = 0.

5.6 Cramer’s Rule

1. Solve the following systems of equations by using Cramer’s rule:

(a)

{

x1 =
5

41
, x2 =

349

82
, x3 =

19

82

}

(b)

{

x1 =
7

34
, x2 = −21

34
, x3 =

3

17

}

(c)

{

x1 =
21

4
, x2 = −9

4
, x3 =

11

4
, x4 = −11

4

}

(d)

{

x1 =
11

27
, x2 =

8

27
, x3 = − 1

27
, x4 =

2

9

}

2. Given the following matrices,

A =





2 −1 2
3 1 −1
1 5 4



 , B =





−1
3
7





define Ai,B to be as specified in this section, while (Ai|B) to be the matrix
found after removing column i from A and then augmenting the resulting ma-
trix with B. Compute the determinants of the following matrices.

(a) det(A) = 59 (b) det(A1,B) = 26 (c) det(A2,B) = 87

(d) det(A3,B) = −12 (e) det((A1|B)) = 26 (f) det((A2|B)) = −87

(g) det((A3|B)) = −12

3. Determine the relationship between det(Ai,B) and det ((Ai|B)), and use it
to verify your results from problem 2.

Since each matrix of the form Ai,B is the same as (Ai|B) with just column
swaps (think elementary matrix of type I with the transposed matrices), then
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either they will have the same value or will differ by a sign. If they differ by
a sign, then there are an odd number of columns swaps required to transform
one matrix to the other, and if they are of the same sign, an even number of
column swaps are required.

4. Let a be a scalar, in the matrix equation

[

a 1
2 3

] [

x
y

]

=

[

4
5

]

For what values of a does this system have one solution? For what values of a
does this system have no solution? For what values of a does this system have
infinitely many solutions?

Notice that det(A) = 3a − 2, and thus when a = 2
3 , A is not invertible

and there is no solution to the system since the two resulting equations are not
scalar multiples of each other (in which case there would be an infinite number
of solutions for the specified value of a). For all other a, the matrix is invertible
and thus only one solution will exist to the system for a 6= 2

3 .

5. Let a be a scalar, in the matrix equation





4 1 2
a 3 a
0 −1 5









x
y
z



 =





4
5
6





For what values of a does this system have one solution? For what values of a
does this system have no solution? For what values of a does this system have
infinitely many solutions?

Similar to the previous problem, we have det(a) = 60 − 3a and thus when
a = 20, det(A) = 0 and there are no solutions. For all other values of A,
det(A) 6= 0 and a unique (one) solution exists.

6. For the matrices A =

[

3− i 1 + 2i
5 + i 1− i

]

and B =

[

3 + 5i
2− 6i

]

, use Cramer’s

Rule to solve the system AX = B.

X =

[

− 27
113 − 47

113 i
365
113 − 51

113 i

]





Chapter 6

Basic Linear Algebra

Topics

6.1 Vectors

1. If −→u = 〈1, 3〉, −→v = 〈5,−7〉, and −→w = 〈−4, 5〉, perform the following opera-
tions:

(a) −→u −−→v = 〈−4, 10〉

(b) 4−→u + 3−→w = 〈−8, 27〉

(c) −6−→v − 2−→w = 〈−22, 32〉

(d) −→u +−→v −−→w = 〈10,−9〉

(e) 2−→u − 3−→v + 6−→w = 〈−37, 57〉

(f) −3−→w + 2−→v − 7−→u = 〈15,−50〉

(g) α−→u − β−→v = 〈α− 5β, 3α+ 7β〉

(h) α−→u − β−→v + γ−→w = 〈α− 5β − 4γ, 3α+ 7β + 5γ〉

(i) α−→w + β−→v = 〈−4α+ 5β, 5α− 7β〉

101
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2. If −→u = 〈−1, 3, 2〉, −→v = 〈5, 0,−7〉, and −→w = 〈−4,−2, 2〉, perform the follow-
ing operations:

(a) 3−→u + 2−→v = 〈7, 9,−8〉

(b) 6−→v − 2−→w = 〈38, 4,−46〉

(c) 7−→v + 3−→w = 〈23,−6,−43〉

(d) 2−→u −−→v + 3−→w = 〈−19, 0, 17〉

(e) −5−→u + 2−→w − 3−→v = 〈−18,−19, 15〉

(f) −6−→w −−→v + 8−→u = 〈11, 36, 11〉

(g) α−→u + β−→w = 〈−α− 4β, 3α− 2β, 2α+ 2β〉

(h) α−→u − β−→v + γ−→w = 〈−α− 5β − 4γ, 3α− 2γ, 2α+ 7β + 2γ〉

(i) α−→u + β−→v = 〈−α+ 5β, 3α, 2α− 7β〉
3. If −→u = 〈−2, 3〉 and −→v = 〈1, 2〉, find values of α and β for each of the
following vectors −→w so that −→w = α−→u + β−→v .

(a) 〈1, 3〉 = 1
7
−→u + 9

7
−→v (b) 〈−1, 2〉 = 4

7
−→u + 1

7
−→v

(c) 〈−5, 6〉 = 16
7
−→u − 3

7
−→v (d) 〈−1, 5〉 = 1−→u + 1−→v

(e) 〈4, 4〉 = − 4
7
−→u + 20

7
−→v (f) 〈−8, 12〉 = 4−→u + 0−→v

4. If −→u = 〈−1, 1, 0〉, −→v = 〈1, 1, 0〉, and −→w = 〈0, 0, 1〉, find values of α, β, and
γ for each of the following vectors −→x , so that −→x = α−→u + β−→v + γ−→w :

(a) 〈1, 3,−1〉 = 1−→u + 2−→v − 1−→w

(b) 〈−1, 2, 4〉 = 3
2
−→u + 1

2
−→v + 4−→w

(c) 〈−5, 6,−4〉 = 11
2
−→u + 1

2
−→v − 4−→w
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5. If −→u = 〈−1, 1, 1〉 and −→v = 〈1, 0, 2〉, find values of α and β (if possible) for
each of the following vectors −→w so that −→w = α−→u + β−→v :

(a) not possible (b) 〈1, 4, 14〉 = 4−→u + 5−→v

(c) not possible (d) not possible

(e) not possible (f) 〈−1, 2, 4〉 = 2−→u + 1−→v

6. For each of the vectors −→w of problem 5, construct a matrix A ∈ R3×3 whose
columns are the vectors −→u , −→v , and −→w , then compute det(A).

(a) det









−1 1 −5
1 0 2
1 2 4







 = −8

(b) det









−1 1 1
1 0 4
1 2 14







 = 0

(c) det









−1 1 0
1 0 0
1 2 1







 = −1

(d) det









−1 1 0
1 0 1
1 2 2







 = 1

(e) det









−1 1 1
1 0 4
1 2 1







 = 13

(f) det









−1 1 −1
1 0 2
1 2 4







 = 0

7. Interpret your results from problem 6.

If the determinant of the matrix is zero, then a solution to the equation in
question should indeed exist. If the determinant is non-zero, no solution will
exist.

8. Let −→v = 〈a, b〉 ∈ R2. The slope of −→v is m−→v =
b

a
if a 6= 0 and otherwise it

does not exist.
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(a) Explain why −→v = 〈a, b〉 and −→w = 〈−b, a〉 are perpendicular (or orthog-
onal) vectors.

This is true simply because of the fact that m−→v = − 1

m−→w
.

(b) Let −→w ∈ R2. Explain why −→v and −→w are parallel exactly when m−→v =
m−→w , or both slopes do not exist.

Since the slope is the ratio of the y-coordinate to the x-coordinate (think
rise over run), if the slopes m−→v and m−→w are the same, then the ratios of the y-
coordinate to the x-coordinate for both vectors are equal, and thus the vectors
are scalar multiples of each other, which is the definition parallel vectors. If
there is no slope, then the two vectors are strictly vertical, and are once again
parallel.

9. Find and plot the vector −→w with the original vector −→v :

(a) A unit vector −→w in the opposite direction to −→v = 〈−2, 5〉.

W

V

–2

0

2

4

6

–6 –4 –2 2 4 6

Figure 6.1: −→w = 〈 2√
29
,− 5√

29
〉

(b) A vector −→w of length seven in the same direction as −→v = 〈4,−7〉.

V

W

–10

–5

0

5

–10 –5 5 10

Figure 6.2: −→w = 〈 28√
65
,− 49√

65
〉
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(c) A vector −→w of length ten in the opposite direction to −→v = 〈1, 6〉.

V

W
–10

–5

0

5

10

–10 –5 5 10

Figure 6.3: −→w = 〈− 10√
37
,− 60√

37
〉

(d) A vector −→w of length three parallel to −→v = 〈−4, 8〉 starting at P (5, 8).

V P

W

–5

0

5

10

15

–10 –5 5 10

Figure 6.4: −→w = 〈− 3√
5
, 6√

5
〉 at the base point P (5, 8)

(e) A vector −→w of length thirteen perpendicular to −→v = 〈−7,−3〉.

W

V

–5

0

5

10

15

–15 –10 –5 5

Figure 6.5: −→w = 〈− 39√
58
, 91√

58
〉 is perpendicular to −→v
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(f) A vector −→w of length two perpendicular to −→v = 〈4,−8〉 starting at
P (3, 10).

P
W

V
–10

–5

5

10

15

–10 –5 5 10 15

Figure 6.6: −→w = 〈 4√
5
, 2√

5
〉 (at the base point P (3, 10)) is perpendicular to −→v

(g) A vector −→w of length eight parallel to the line 4x+ 7y = 10.

V

4x+7y=10

–6

–4

–2

0

2

4

6

–4 –2 2 4 6 8 10

Figure 6.7: −→w = 〈 56√
65
,− 32√

65
〉 is parallel to the line 4x+ 7y = 10.

10. Using trigonometry, find the angle between the two vectors −→v = 〈−2, 5〉
and −→w = 〈7, 3〉.

Using the Law of Cosines, one has

85 = 29 + 58−
√
29

√
58 cos(A),

where A is the angle between the two vectors −→v = 〈−2, 5〉 and −→w = 〈7, 3〉.
Solving for A gives

A = cos−1

(

1

29
√
2

)

≈ 1.54641 radians

≈ 88.6028◦
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11. Let −→v = 〈−2, 5〉 and −→w = 〈7, 3〉 be two adjacent sides of a triangle. Find
the length of the third side of this triangle using the length of a vector.

The three points that define this triangle (−2, 5), (0, 0) and (7, 3). This
distance from (−2, 5) to (0, 0) is |−→v | =

√
29, the distance from (0, 0) to (7, 3)

is |−→w | =
√
58, and lastly, the distance from (−2, 5) to (7, 3) is |−→w −−→v | =

√
85.

12. Find the distance between the two points P (1,−4, 7, 0, 2),Q(−9, 3, 5,−6, 8).

d(P,Q) =
√

(1 − (−9))2 + (−4− 3)2 + (7− 5)2 + (0 − (−6))2 + (2 − 8)2

=
√
225

= 15

6.2 Dot Product

1. Compute the dot products of the following pairs of vectors.

(a) 〈−5, 2〉 · 〈3,−2〉 = −19 (b) 〈1, 4〉 · 〈−6, 3〉 = 6

(c) 〈−2− i, 1〉 · 〈3,−2i〉 = −6− i (d) 〈3, 2,−2〉 · 〈4, 3,−2〉 = 22

(e) 〈1, 0, 4〉 · 〈2,−6, 0〉 = 2 (f) 〈4, 2, 5〉 · 〈1, 3,−2〉 = 0

2. Compute the norms of the following vectors.

(a) |〈−5, 2〉| =
√
29 (b) |〈−3, 3〉| = 3

√
2

(c) |〈5, 3− 2i〉| =
√
38 (d) |〈1, 0,−2〉| =

√
5

(e)

∣

∣

∣

∣

〈1

2
, 0, 4

〉

∣

∣

∣

∣

=
√
65
2

(f)

∣

∣

∣

∣

〈

3− 6i,− 1√
3
, 2 + i

〉

∣

∣

∣

∣

=
√
453
3

(g) |〈1, 2,−1, 1〉| =
√
7 (h) |〈−1, 2, 5, 3, 2〉| =

√
43

(i) |〈1− i, 8 + 2i, 3 + 2i, 1− i〉| =
√
85
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3. Determine the angle between the following pairs of vectors.

(a) 〈−3, 6〉, 〈4, 2〉 → θ = π
2

(b) 〈1,−4〉, 〈−2, 2〉 → θ = π − cos−1
(

5√
34

)

≈ 2.601173153 radians

(c) 〈−2, 1〉, 〈2,−1〉 → θ = π

(d) 〈1, 0,−2〉, 〈0, 3, 0〉 → θ = π
2

(e) 〈3,−2, 4〉, 〈2,−6, 2〉 → θ = cos−1
(

13√
319

)

≈ 0.7555999630 radians

4. For each of the following vectors −→v , find a second vector −→w such that
−→v ⊥ −→w .

Answers can vary for this problem.

(a) 〈2, 3〉 ⊥ 〈−3, 2〉 (b) 〈5,−1〉 ⊥ 〈1, 5〉

(c) 〈1, 0, 5〉 ⊥ 〈−5, 2, 1〉 (d) 〈2, 1, 3〉 ⊥ 〈3, 3,−3〉

(e) 〈7, 0,−2, 2〉 ⊥ 〈0, 0, 3,−3〉 (f) 〈−2, 3, 1, 5〉 ⊥ 〈2, 1, 1, 0〉

5. Prove the Cauchy-Schwarz inequality, which states that if −→u ,−→v ∈ Rn, then

|−→u · −→v | ≤ |−→u | |−→v |
First, we note that taking the absolute value of each side of equation 6.6

gives
|−→u · −→v | = |−→u | |−→v | |cos(θ)|

Under the assumption that −→u and −→v are not both zero (in which case we have
0 ≤ 0) and using the fact that 0 ≤ |cos(θ)| ≤ 1, we arrive at the Cauchy-
Schwarz inequality.

6. Use the Cauchy-Schwarz inequality to prove the Triangle inequality, which
states that for −→u ,−→v ∈ Rn:

|−→u +−→v | ≤ |−→u |+ |−→v |

Hint: Start with the fact that |−→u +−→v |2 = (−→u +−→v ) · (−→u +−→v ), and expand the

righthand side using the distributivity of the dot product.

Since we are dealing with positive values on both sides of the inequality,
and using the hint, we will prove the squared version instead:

|−→u +−→v |2 ≤ (|−→u |+ |−→v |)2
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The hint tells us to use

|−→u +−→v |2 = (−→u +−→v ) · (−→u +−→v )

and we now expand the righthand side and manipulate (here we also make use
of the fact that these are real vectors):

(−→u +−→v ) · (−→u +−→v ) = −→u · −→u +−→u · −→v +−→v · −→u +−→v · −→v
= −→u · −→u + 2−→u · −→v +−→v · −→v
= |−→u |2 + |−→v |2 + 2−→u · −→v
≤ |−→u |2 + |−→v |2 + 2 |−→u · −→v |
≤ |−→u |2 + |−→v |2 + 2 |−→u | |−→v |
= (|−→u |+ |−→v |)2 .

We therefore now have

|−→u +−→v |2 ≤ (|−→u |+ |−→v |)2 ,

and since the quantities under the squares are all positive, we arrive at

|−→u +−→v | ≤ |−→u |+ |−→v |

7. Find the area and the interior angles of the triangle with the two adjacent
sides −→v = 〈−5,−9〉 and −→w = 〈7, 3〉.

A =
1

2

√

106 · 58− (−62) = 24

The angle between −→v and −→w is θ1 ≈ 2.482786618 radians.

The angle between −→v and −→w −−→v is θ2 ≈ 0.3805063781 radians.

The angle between −→w and −→v −−→w is θ3 ≈ 0.2782996610 radians.

Notice that θ1 + θ2 + θ3 = 3.141592657≈ π.

8. Find the area and the interior angles of the triangle with the two adjacent
sides −→v = 〈−5,−9, 12〉 and −→w = 〈7, 3,−6〉.

A =
1

2

√
94 · 250− 17956 = 3

√
154

The angle between −→v and −→w is θ1 ≈ 2.634416612 radians.
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The angle between −→v and −→v −−→w is θ2 ≈ 0.1915244633 radians.

The angle between −→w and −→w −−→v is θ3 ≈ 0.3156515777 radians.

Notice that θ1 + θ2 + θ3 = 3.141592653≈ π.

9. Consider the following two vectors in C4

−→v = 〈−5 + 4i,−9− i, 12, 7i〉, −→w = 〈7 − 2i, 3,−6 + 5i, 1 + i〉

For parts (c) and (d), you may wish to refer back to problems 5 and 6, and
make use of the Triangle and Cauchy-Schwarz Inequalities.

(a) Compute −→v · −→w and −→w · −→v .

−→v · −→w = −135− 38 i, −→w · −→v = −135 + 38 i

(b) Find the norms of the two vectors −→v and −→w .

|−→v | = 2
√
79, |−→w | = 5

√
5

(c) Is it true that |−→v +−→w | ≤ |−→v |+ |−→w |?

The answer is yes:

|−→v +−→w | = 3
√
19 ≈ 13.07669683

|−→v |+ |−→w | = 2
√
79 + 5

√
5 ≈ 28.95672871

(d) Is it true that |−→v · −→w | ≤ |−→v | |−→w |?

The answer is yes:

|−→v · −→w | =
√
19669 ≈ 140.2462121

|−→v | |−→w | = 10
√
395 ≈ 198.7460691

10. Find a vector −→w of norm seven perpendicular to −→v = 〈−5,−9〉.

First we find a vector −→w perpendicular to −→v . Notice that −→w = 〈9,−5〉 is
such a vector, but is by no means unique. To make this vector length seven,
we divide it by its magnitude, then multiply by seven:

−→x =
7

|−→w |
−→w =

7√
106

〈9,−5〉

11. Find two different vectors −→w of norm four perpendicular to −→v = 〈7, 3,−6〉.
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Two simple vectors to pick for this problem would be

−→w1 = 〈0, 6, 3〉, −→w2 = 〈−3, 7, 0〉

Clearly there are others, but these two are simple enough. We make them have
norm four the same way as the previous problem:

−→x1 =
4

3
√
5
〈0, 6, 3〉, −→x2 =

4√
58

〈−3, 7, 0〉

12. Find two nonzero vectors −→w1 and −→w2 perpendicular to −→v = 〈7, 3,−6〉,
where −→w1 and −→w2 are also perpendicular.

We take the first vector from the previous problem, −→w1 = 〈0, 6, 3〉, now we
need to find a second vector, −→w2, such that −→w1 · −→v = −→w2 · −→v = 0. If we set
−→w2 = 〈a, b, c〉, then we have the two equations

7a+ 3b− 6c = 0

6b− 3c = 0

Solving two equations in three unknowns yields an infinite number of solutions
(in this case). As an example, one solution is we can let a = 9, b = 7 and
c = 14, yielding −→w2 = 〈9, 7, 14〉 .

13. Let −→v = 〈a, b, c〉 ∈ R3 be fixed. What equation must −→w = 〈x, y, z〉 ∈ R3

satisfy for −→w and −→v to be perpendicular, and what does this equation represent
in R3?

The equation is
〈a, b, c〉 · 〈x, y, z〉 = 0,

or
ax+ by + cz = 0,

which is the equation of a plane in R3 through the origin.

14. Find the equation of the plane in R3 that is perpendicular to the vector
−→v = 〈7, 3,−6〉 and goes through the origin 〈0, 0, 0〉.

Using the information from problem 13, the equation is

〈7, 3,−6〉 · 〈x, y, z〉 = 0

or 7x+ 3y − 6z = 0.
15. Find the equation of the plane in R3 that is perpendicular to the vector
−→v = 〈7, 3,−6〉 and goes through the point P (−2, 5, 8).
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In this instance, we require that

〈7, 3,−6〉 · (〈x, y, z〉 − 〈−2, 5, 8〉) = 0,

which simplifies to 47+7x+3y−6z = 0, or in standard form 7x+3y−6z = −47.

16. Use the dot product to show that the diagonals of a square are perpendic-
ular.

We will assume that one corner of the square is at the origin, as all angles
are relative to the vectors themselves, and not where the square is located.

A square can be formed using two perpendicular vectors −→a and
−→
b , and as

a result, the diagonals are −→a +
−→
b and −→a − −→

b . If these two diagonals are
perpendicular, then their dot product should be zero:

(−→a +
−→
b
)

·
(−→a −−→

b
)

= −→a · −→a −−→a · −→b +
−→
b · −→a −−→

b · −→b

= −→a · −→a −−→
b · −→b

= |−→a |2 −
∣

∣

∣

−→
b
∣

∣

∣

2

but since this is a square, the length vectors −→a and
−→
b are zero,

(−→a +
−→
b
)

·
(−→a −−→

b
)

= 0.

17. Find a formula for the angle between the two diagonals of a parallelogram
in terms of the lengths of any two of its adjacent sides.

The two vectors we need to find the angle between are −→a +
−→
b and −→a −−→

b .
Using equation 6.7, we have

cos(θ) =

(−→a +
−→
b
)

·
(−→a −−→

b
)

∣

∣

∣

−→a +
−→
b
∣

∣

∣

∣

∣

∣

−→a −−→
b
∣

∣

∣

=
|−→a |2 −

∣

∣

∣

−→
b
∣

∣

∣

2

∣

∣

∣

−→a +
−→
b
∣

∣

∣

∣

∣

∣

−→a −−→
b
∣

∣

∣

18. Let f(x) and g(x) be any two real continuous functions for x ∈ [a, b]. Define
the dot product of f(x) and g(x) by

f(x) · g(x) =
∫ b

a

f(x) g(x)dx
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(a) Find f(x) · g(x), f(x) · f(x), and g(x) · g(x) for f(x) = ex and g(x) =
cos(x) on the interval [0, π].

∫ π

0

f(x) g(x) dx = −1

2
(eπ + 1)

∫ π

0

f(x) f(x) dx =
1

2

(

e2 π − 1
)

∫ π

0

g(x) g(x) dx =
π

2

(b) Show that this dot product of two functions satisfies the usual proper-
ties of a real dot product.

Using the rules of integral calculus, we have

∫ b

a

f(x) g(x) dx =

∫ b

a

g(x) f(x) dx

∫ b

a

(f(x) + g(x))h(x) dx =

∫ b

a

f(x)h(x) dx +

∫ b

a

g(x)h(x) dx

∫ b

a

f(x) f(x) dx =

∫ b

a

|f(x)|2 dx

∫ b

a

(c f(x)) g(x) dx = c

∫ b

a

f(x) g(x) dx

∫ b

a

f(x) (d g(x)) dx = d

∫ b

a

f(x) g(x) dx

(c) Find all possible dot products of the functions

{1, cos(x), cos(2x), sin(x), sin(2x)}

with each other and themselves on the interval [0, 2π]. Do you see a pattern
here, what is it?

∫ 2π

0

1 dx = 2π

∫ 2π

0

cos(x) cos(x) dx =

∫ 2π

0

cos(2x) cos(2x) dx = π

∫ 2π

0

sin(x) sin(x) dx =

∫ 2π

0

sin(2x) sin(2x) dx = π

∫ 2π

0

1 cos(x) dx =

∫ 2π

0

1 cos(2x) dx = 0
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∫ 2π

0

1 sin(x) dx =

∫ 2π

0

1 sin(2x) dx = 0

∫ 2π

0

cos(x) cos(2x) dx =

∫ 2π

0

cos(x) sin(x) dx = 0

∫ 2π

0

cos(x) sin(2x) dx =

∫ 2π

0

cos(2x) sin(x) dx = 0

∫ 2π

0

cos(2x) sin(2x) dx =

∫ 2π

0

sin(x) sin(2x) dx = 0

Since the dot product between any two distinct functions in this set is zero, we
have a set of perpendicular functions.

(d) Find all possible dot products of the functions
{

1, x, x2, x3
}

with each other and themselves on the interval [−1, 1].

∫ 1

−1

1 · 1 dx = 2,

∫ 1

−1

1 · x2 dx =
2

3
,

∫ 1

−1

1 · x dx =

∫ 1

−1

1 · x3 dx = 0

∫ 1

−1

xx dx =
2

3
,

∫ 1

−1

xx2 dx = 0,

∫ 1

−1

xx3 dx =
2

5
∫ 1

−1

x2 x2 dx =
2

5
,

∫ 1

−1

x2 x3 dx = 0,

∫ 1

−1

x3 x3 dx =
2

7

19. Let A be a real n × n matrix with −→u ,−→v ∈ Rn written as column vectors
in Rn. Show that the real dot product satisfies (A−→u ) · −→v = −→u ·

(

AT −→v
)

. Give
an example when n = 2 to illustrate this formula.

By the definition of the dot product, we have

(A−→u ) · −→v = (A−→u )T −→v
=

(−→u T AT
) −→v

= −→u T
(

AT −→v
)

= −→u ·
(

AT −→v
)

As an example, we will will let

A =

[

1 2
−3 1

]

, −→u = 〈3, 3〉, −→v = 〈−1, 5〉
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and thus

(A−→u ) · −→v = 〈9,−6〉 · 〈−1, 5〉 = −39
−→u ·

(

AT −→v
)

= 〈3, 3〉 · 〈−16, 3〉 = −39

20. Let A be a complex n×nmatrix with −→u ,−→v ∈ Cn written as column vectors

in Cn. Show that the complex dot product satisfies (A−→u ) · −→v = −→u ·
(

A
T −→v

)

.

Give an example when n = 2 to illustrate this formula.

By the definition of the dot product, we have

(A−→u ) · −→v = (A−→u )T
−→
v

=
(−→u T AT

) −→
v

= −→u T
(

AT −→
v
)

= −→u T
(

AT −→v
)

= −→u T

(

A
T −→v

)

= −→u ·
(

A
T −→v

)

As an example, we will will let

A =

[

1 + i 2− 3 i
−3 + 2 i 4 + 6 i

]

, −→u = 〈2 + 2 i, 3− 2 i〉, −→v = 〈−1 + 2 i, 5− 3 i〉

and thus

(A−→u ) · −→v = 〈−9 i, 14 + 8 i〉 · 〈1 + 2 i, 5− 3 i〉 = 28 + 91 i

−→u ·
(

A
T −→v

)

= 〈2 + 2 i, 3− 2 i〉 · 〈−20− 2 i,−6 + 41 i〉 = 28 + 91 i

6.3 Cross Product

1. Given −→u = 〈1, 2,−1〉, −→v = 〈−3,−1, 4〉, and −→w = 〈5,−1, 0〉, compute the

following. As previously defined,
−→
i = 〈1, 0, 0〉, −→j = 〈0, 1, 0〉, and −→

k = 〈0, 0, 1〉
are the three standard unit vectors of R3.
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(a) −→v ×−→w = 〈4, 20, 8〉 (b) −→w ×−→u = 〈1, 5, 11〉

(c) −→u ×−→v = 〈7,−1, 5〉 (d) −→w ×−→v = 〈−4,−20,−8〉

(e) (−→u ×−→v )×−→w = 〈5, 25,−2〉 (f) −→u × (−→v ×−→w ) = 〈36,−12, 12〉

(g)
−→
i ×−→v = 〈0,−4,−1〉 (h) −→u ×−→

k = 〈2,−1, 0〉

(i)
−→
j ×−→w = 〈0, 0,−5〉

2. Compute the areas of each of the triangles defined by the following sets of
points.

(a) {(0, 1), (2, 3), (6, 2)}

First we need two displacement vectors, −→v and −→w . We can choose any
point as the common base point, so we pick (0, 1). This gives −→v = 〈2, 2〉 and
−→w = 〈6, 1〉. Using equation 6.13, we have

A =
1

2
|〈2, 2, 0〉 × 〈6, 1, 0〉|

=
1

2
|〈0, 0,−10〉|

= 5

(b) {(0, 1, 2), (2, 3, 1), (1, 6, 2)}

Similar to part (a), we use the first point as base point, to get −→v = 〈2, 2,−1〉
and −→w = 〈1, 5, 0〉.

A =
1

2
|〈2, 2,−1〉 × 〈1, 5, 0〉|

=
1

2
|〈5, 1,−8〉|

=
1

2
3
√
10

3. Prove the following properties of the cross product.

(a)
−→
i ×−→

j = det









−→
i

−→
j

−→
k

1 0 0
0 1 0







 = 0
−→
i + 0

−→
j + 1

−→
k =

−→
k

(b)
−→
j ×−→

k = det









−→
i

−→
j

−→
k

0 1 0
0 0 1







 = 1
−→
i + 0

−→
j + 0

−→
k =

−→
i
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(c)
−→
k ×−→

i = det









−→
i

−→
j

−→
k

0 0 1
1 0 0







 = 0
−→
i + 1

−→
j + 0

−→
k =

−→
j

(d)
−→
j ×−→

i = det









−→
i

−→
j

−→
k

0 1 0
1 0 0







 = 0
−→
i + 0

−→
j − 1

−→
k = −−→

k

(e)
−→
k ×−→

j = det









−→
i

−→
j

−→
k

0 0 1
0 1 0







 = −1
−→
i + 0

−→
j + 0

−→
k = −−→

i

(f)
−→
i ×−→

k = det









−→
i

−→
j

−→
k

1 0 0
0 0 1







 = 0
−→
i − 1

−→
j + 0

−→
k = −−→

j

4. If −→u ,−→v ,−→w ∈ R3, and α ∈ R, verify the following identities: (Property (c)
is an example of a Jacobi identity).

(a) −→u × (−→v +−→w ) = (−→u ×−→v ) + (−→u ×−→w )

This is a straight forward computation.

(b) (α−→u )×−→v = −→u × (α−→v )

This is a straight forward computation.

(c) −→u × (−→v ×−→w ) +−→v × (−→w ×−→u ) +−→w × (−→u ×−→v ) = 0

This is a straight forward computation, albeit a little lengthy.

5. If
−−→
v(t) = 〈cos(t), sin(t), 0〉, show that the angle θ between

−−→
v(t) and

−→
i satis-

fies sin(θ) = |sin(t)|, and that
∣

∣

∣

−−→
v(t)×−→

i
∣

∣

∣

2

= sin2(t).
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Using equation 6.12, we have

sin(θ) =

∣

∣

∣

−→v ×−→
i
∣

∣

∣

|−→v | |−→v |

=
|〈0, 0,− sin(t)〉|

1 · 1
= |sin(t)|

However since 0 ≤ θ ≤ π, sin(θ) ≥ 0, we have sin(θ) = |sin(t)|. Furthermore,

we automatically arrive at
∣

∣

∣

−−→
v(t)×−→

i
∣

∣

∣

2

= sin2(t).

6. Verify the two cross product and dot product properties in the table at the
end of the section.

This is another straight forward computation, similar to problem 4.

7. (a) Let ax+ by+ cz = d be the equation of a plane. Show that for any two

points P and Q in this plane, the displacement vector
−−→
PQ is perpendicular to

−→v = 〈a, b, c〉, that is, −→v = 〈a, b, c〉 is perpendicular to the plane ax+by+cz = d.

If we set P = (xp, yp, zp) and Q = (xq, yq, zq), then

a xp + b yp + c zp = d, a xq + b yq + c zq = d

and taking the difference of these two equations yields

a (xq − xp) + b (yq − yp) + c (zq − zp) = d− d

or
〈a, b, c〉 · −−→PQ = 0

(b) Let ax+ by + cz = d and ex+ fy + gz = h be two intersecting planes.
Find the equation of the plane through the origin perpendicular to these two
given planes.

Setting −→p = 〈a, b, c〉 and −→q = 〈e, f, g〉, notice that these vectors are per-
pendicular points lying on each plane, respectively. Therefore, the equation of
the plane we desire is given by

(−→p ×−→q ) · 〈x, y, z〉 = 0

(c) Let 5x+2y+7z = −9 and 3x− 4y+11z = 1 be two intersecting planes.
Find the equation of the plane through the origin perpendicular to these two
given planes. Find the equation of the plane through P (−1, 0, 4) perpendicular
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to these two given planes.

Using the formula from the previous problem, we have

(〈5, 2, 7〉 × 〈3,−4, 11〉) · 〈x, y, z〉 = 0

〈50,−34,−26〉 · 〈x, y, z, 〉 = 0

50 x− 34 y − 26 z = 0

and the plane passing through the point P (−1, 0, 4) is given by

(〈5, 2, 7〉 × 〈3,−4, 11〉) · 〈x+ 1, y, z − 4〉 = 0

50 x− 34 y − 26 z = 154

8. (a) Let x = a t+ α, y = b t+ β, z = c t+ γ be the parametric equation of a
line in space for t ∈ R. Show that for any two points P and Q on this line that

the displacement vector
−−→
PQ is parallel to −→v = 〈a, b, c〉, that is, −→v = 〈a, b, c〉 is

parallel to the line x = a t+ α, y = b t+ β, z = c t+ γ. Note that when t = 0,
we have that (α, β, γ) is a point on this line. As well, this parametric equation
for a line in space is the spacial version of the point-slope formula for a line in
the xy-plane.

Let t0 be the time corresponding to point P , and t1 to Q. Thus,

P = (a t0 + α, b t0 + β, c t0 + γ) , Q = (a t1 + α, b t1 + β, c t1 + γ)

and

−−→
PQ = 〈a (t1 − t0) , b (t1 − t0) , c (t1 − t0)〉

= (t1 − t0) 〈a, b, c〉
= (t1 − t0)

−→v

(b) Let px+ qy + rz = s and ex+ fy + gz = h be two intersecting planes.
Find a vector parallel to their line of intersection.

A vector parallel to to the line of intersection between planes is simply

〈p, q, r〉 × 〈e, f, g〉

since the vectors in the above cross product are perpendicular to their planes,
the cross product must be perpendicular to those perpendicular vectors, and
must therefore be parallel to the line of intersection.

(c) Let 5x+2y+7z = −9 and 3x− 4y+11z = 1 be two intersecting planes.
Find the parametric equation for their line of intersection.
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Using part (b), the vector parallel to the line of intersection is given by
〈5, 2, 7〉 × 〈3,−4, 11〉 = 〈50,−34,−26〉. Now we need to find a point that both
planes share in common. Since we are attempting to solve two equations with
three unknowns, we expect a solution of dimension one (i.e. a line). So to find
only a point, we select a value for one of the variables. We will set z = 0 and
see if we get a solution:

5x+ 2y = −9

3x− 4y = 1

has solution x = − 17
13 , y = − 16

13 . Therefore, the point
(

− 17
13 ,− 16

13 , 0
)

lies on
the line of intersection. We now have a point and a direction. Thus, if we
start at the point just found, and travel in the direction of the cross product
(any distance at all), we are still on the line of intersection. Putting this
into a mathematical expression, we get that the line of intersection can be
parameterized as

〈x, y, z〉 =
〈

−17

13
+ 50 t,−16

13
− 34 t, 0− 26 t

〉

.

Once again note that there are many ways to parameterize this line, as you can
chose any point on the line and any vector in the direction parallel to the line.

9. Using problem 7, find the equation of the plane through the three points
P (1, 5, 9), Q(−3, 4,−8), and R(7,−2, 6).

First we create two displacement vectors −→v = Q − P = 〈−4,−1,−17〉 and
−→w = R− P = 〈6,−7,−3〉 and then we take the cross product of the two:

〈−4,−1,−17〉 × 〈6,−7,−3〉 = 〈−116,−114, 34〉
which is perpendicular to the plane in question. Using the same ideas as part
(c) of problem 7, we get the formula for the plane is given by

〈−116,−114, 34〉 · 〈x− 1, y − 5, z − 9〉 = 0

where we have chosen the point P as the point on the plane (we could have
chosen Q or R). Expanding this equation gives the standard form of this plane
to be −116 x− 114 y+ 34 z = −380.

10. (See problem 8.) (a) Let x = a t+α, y = b t+β, z = c t+γ and x = d t+δ,
y = e t + θ, z = f t + λ be two intersecting lines in space. Find a vector per-
pendicular to the plane through these two points.

The direction of the first line is 〈a, b, c〉 and the second is 〈d, e, f〉. Therefore,
a vector perpendicular to both is the cross product of the two just given:

〈a, b, c〉 × 〈d, e, f〉
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(b) Find the equation of the plane through the two intersecting lines x =
5t+ 2, y = −3t+ 1, z = 4t− 5 and x = −7t+ 2, y = 2t+ 1, z = 9t− 5.

First, we need the vector perpendicular to both lines. Using part (a), we
see that this vector is

〈5,−3, 4〉 × 〈−7, 2, 9〉 = 〈−35,−73,−11〉

Now we need to find the point of intersection of these two lines. Setting each
pair of coordinates equal yields the system of equations

{5 t+ 2 = −7 t+ 2, −3 t+ 1 = 2 t+ 1, 4 t− 5 = 9 t− 5}

which has solution t = 0. Plugging in t = 0 into either line gives the point
of intersection to be (2, 1,−5). Now we have a point on the plane, and the
perpendicular vector, so our final answer is

〈−35,−73,−11〉 · 〈x− 2, y − 1, z + 5〉 = 0

or in standard form −35 x− 73 y − 11 z = −88.

11. Explain why the associative property of the cross product is false, that is,
explain why

−→u × (−→v ×−→w ) 6= (−→u ×−→v )×−→w
Give a general example to illustrate that this is correct.

The argument is simply a geometric one. Try to draw these vectors in your
head. Note that −→v ×−→w is perpendicular to both −→v and −→w Crossing this with
−→u gives a vector perpendicular to both −→v ×−→w and −→u .

On the other hand, the second set of cross products will result in a vector
which is perpendicular to −→u ×−→v and −→w instead.

As an example consider −→u = 〈1, 0,−1〉, −→v = 〈0, 1, 0〉 and −→w = 〈1, 1, 1〉,
then

−→u × (−→v ×−→w ) = 〈0, 0, 0〉
(−→u ×−→v )×−→w = 〈−1, 0, 1〉

Note that the first answer was the zero vector. This example was constructed
to show that in the first formula, the first cross product yields a vector in the
direction of the third, which results in the second cross product in the expres-
sion yielding the zero vector. In the second formula, the first cross product does
not result in a vector in the direction of the third, which implies the second
cross product in the expression will result in a nonzero vector.
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12. Can the cross product be defined for complex vectors in C3? If no, explain
why not. If yes, then do all of the properties of the cross product still hold if
we switch to complex dot product?

Unlike the dot product where conjugates need to be taken, nothing changes
with vectors in C3 and yes, all formulas still hold.

6.4 Vector Projection

1. For −→v ,−→w ∈ Rn, under what conditions does proj−→v (
−→w ) =

−→
0 ?

For the projection to be zero, the two vectors must be perpendicular (draw
the picture in your head, see why this is so).

2. For −→v ,−→w ∈ Rn, relate the sign of comp−→v (
−→w ) to the angle θ between −→v and

−→w .

If the angle satisfies 0 ≤ θ ≤ π
2 , then comp−→v (

−→w ) ≥ 0 (see figure 6.12). If
π
2 < θ ≤ π, then comp−→v (

−→w ) ≤ 0 (see figure 6.13).

3. Compute comp−→v (
−→w ) for the following pairs of vectors:

Refer to equation 6.19 for the formula:

(a) −→v = 〈−1, 2〉,−→w = 〈3, 5〉 → comp−→v (
−→w ) =

7√
5

(b) −→v = 〈4, 6〉,−→w = 〈2, 3〉 → comp−→v (
−→w ) =

√
13

(c) −→v = 〈3, 0〉,−→w = 〈5, 1〉 → comp−→v (
−→w ) = 5

(d) −→v = 〈−1, 0, 2〉,−→w = 〈3, 2,−2〉 → comp−→v (
−→w ) = − 7√

5

(e) −→v = 〈1, 1,−1〉,−→w = 〈2,−1, 2〉 → comp−→v (
−→w ) = − 1√

3

(f) −→v = 〈3, 0, 0〉,−→w = 〈−1, 1, 1〉 → comp−→v (
−→w ) = −1

(g) −→v = 〈3,−2,−4〉,−→w = 〈−1, 2, 0〉 → comp−→v (
−→w ) = − 7√

29

(h) −→v = 〈1, 1,−1, 1〉,−→w = 〈1,−1, 1, 1〉 → comp−→v (
−→w ) = 0
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4. Compute proj−→v (
−→w ) for the following pairs of vectors:

Notice that these are the same vectors as those from problem 3. We will
use the formula

proj−→v (
−→w ) = comp−→v (

−→w )
−→v
|−→v |

which means all we have to do is find the unit length vector for each −→v in the
given problems, and multiply them by the corresponding answers to problem 3.

(a) −→v = 〈−1, 2〉,−→w = 〈3, 5〉 → proj−→v (
−→w ) =

〈

−7

5
,
14

5

〉

(b) −→v = 〈4, 6〉,−→w = 〈2, 3〉 → proj−→v (
−→w ) = 〈2, 3〉

(c) −→v = 〈3, 0〉,−→w = 〈5, 1〉 → proj−→v (
−→w ) = 〈5, 0〉

(d) −→v = 〈−1, 0, 2〉,−→w = 〈3, 2,−2〉 → proj−→v (
−→w ) =

〈

7

5
, 0,−14

5

〉

(e) −→v = 〈1, 1,−1〉,−→w = 〈2,−1, 2〉 → proj−→v (
−→w ) =

〈

−1

3
,−1

3
,
1

3

〉

(f) −→v = 〈3, 0, 0〉,−→w = 〈−1, 1, 1〉 → proj−→v (
−→w ) = 〈−1, 0, 0〉

(g) −→v = 〈3,−2,−4〉,−→w = 〈−1, 2, 0〉 → proj−→v (
−→w ) =

〈

−21

29
,
14

29
,
28

29

〉

(h) −→v = 〈1, 1,−1, 1〉,−→w = 〈1,−1, 1, 1〉 → proj−→v (
−→w ) = 〈0, 0, 0, 0〉

5. Compute the normal vectors to each of the following planes:

(a) 3x− 5y = 7 → −→n = 〈3,−5〉 (b) 2x+ 8y = 2 → −→n = 〈2, 8〉

(c) x− 5y + 7z = 3 → −→n = 〈1,−5, 7〉 (d) 2w − 4x+ 5y − 7z = 2 →
−→n = 〈2,−4, 5,−7〉

6. Find the distance from the point P (2, 3) to the line 3x− 4y = 6.

Using equation 6.20, we have that

D(P,L) =
|(3)(2) + (−4)(3)− 6|

√

32 + (−4)2
=

12

5

7. Find the distance from the point P (1,−2, 4) to the plane 2x+ 5y − 6z = 1.

Using equation 6.22, we have that

D(P,R) =
|(2)(1) + (5)(−2) + (−6)(4)− 1|

√

22 + 52 + (−6)2
=

33√
65
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8. Find the distance from the point P (1,−2, 4,−1) to the plane w+3x− 2y+
2z = −1.

Modifying equation 6.20 or 6.22, we have

D(P,R) =
|aw0 + b x0 + c y0 + d z0 − e|√

a2 + b2 + c2 + d2

=
|(1)(1) + (3)(−2) + (−2)(4) + (2)(−1)− (−1)|

√

12 + 32 + (−2)2 + 22

=
14

3
√
2

9. For each of problems 6-8, find the point that lies on the line or plane at the
location that minimizes distance between the line or plane and P .

(a) We do this two ways. First note that since we have the distance from
the point to the line being 12

5 , we simply need to start at the point P and go
12
5 units in the direction perpendicular to the line starting at P . This will yield
the point on the line, as desired. The direction perpendicular to 3x − 4y = 6
is 〈3,−4〉. This our closest point Q, on the line, can be gotten by the formula:

−→
Q = 〈2, 3〉+ 12

5

〈3,−4〉
|〈3,−4〉| =

〈

86

25
,
27

25

〉

Secondly, we could find the intersection of the line 3x − 4y = 6, and the line
perpendicular to it which passes through P (2, 3). The equation of this perpen-
dicular line is 4 (x− 2) + 3 (y − 3) = 0. Solving for x and y gives x = 86

25 , and
y = 27

25 , which agrees with the first approach.

(b) We will use the first approach from part (a) here:

−→
Q = 〈1,−2, 4〉+ 33√

65

〈2, 5,−6〉
|〈2, 5,−6〉| =

〈

131

65
,
7

13
,
62

65

〉

(c) Same here

−→
Q = 〈1,−2, 4,−1〉+ 14

3
√
2

〈1, 3,−2, 2〉
|〈1, 3,−2, 2〉| =

〈

16

9
,
1

3
,
22

9
,
5

9

〉

10. Can the ideas of this section be generalized to vector projection of com-
plex vectors in Cn? If yes, then explain how and what still works using the
complex dot product. If no, then explain why not specifically stating what fails.

From the text, we know that proj−→v (
−→w ) is simply a vector in the direction of

−→v , thus proj−→v (
−→w ) = α−→v , for a complex scalar α. The requirement is simply
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that −→v · (−→w − α−→v ) = 0. Working with this equation gives:

−→v · (−→w − α−→v ) = 0
−→v · −→w = −→v · (α−→v )
−→v · −→w = α (−→v · −→v )
−→v · −→w
|−→v |2

= α

−→w · −→v
|−→v |2

= α

Some of these steps required specific properties of the complex dot product, so
please be sure you follow all steps given above.

As an example, consider −→v = 〈1 + i, 1 − 2 i〉 and −→w = 〈2 + 3 i,−4 + i〉.
Using the definition of α given above, we get that α = − 1

7 − 6
7 i. Thus,

proj−→v (
−→w ) = 〈57 − i,− 13

7 − 4
7 i〉. Clearly proj−→v (

−→w ) is in the direction of −→v
since proj−→v (

−→w ) =
(

− 1
7 − 6

7 i
) −→v . We also get that −→v · (−→w − proj−→v (

−→w )) = 0.
These are the two requirements of the projection vector, and therefore we have
successfully performed a complex vector projection.

11. Find a formula for the shortest distance between the two parallel planes
ax + by + cz = d and ax + by + cz = e. Test your formula on an example of
two planes.

To find a formula for the distance between these planes, all we need to do
is chose a point on one plane, and then apply the standard formula (equation
6.22) for the distance from a point to a plane.

To find a point on the plane ax + by + cz = d, we will assume that c 6= 0,
and let x = y = 0, in which case z = d

c
. So the point is now given to be

(

0, 0, d
c

)

.

Using equation 6.22, with P
(

0, 0, d
c

)

and ax+ by + cz = e gives

D(P,R) =

∣

∣(a)(0) + (b)(0) + (c)
(

d
c

)

− e
∣

∣

√
a2 + b2 + c2

=
|d− e|√

a2 + b2 + c2

As an example of two planes, consider 2 x−3 y+4 z = 1 and 4 x−6 y+8 z =
−4. Note that the second plane can be written as 2 x− 3 y + 4 z = −2. If we
letx = y = 0 in the first equation, then solving for z gives z = 1

4 . So the point
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P is given as P
(

0, 0, 14
)

. We now plug this into the formula to get

D(P,R) =

∣

∣(2)(0) + (−3)(0) + (4)
(

1
4

)

− (−2)
∣

∣

√

22 + (−3)2 + 42

=
3√
29

12. Find a formula for the shortest distance between the line x = at + α ,
y = bt+β, z = ct+γ, parallel to the plane ex+fy+gz = h. Test your formula
on an example of a parallel line and plane. Also, how can we test if a line and
plane in R3 are parallel or not?

Since any point will do, we set t = 0 in the parametric equation of the line
to get P (α, β, γ). Then we apply equation 6.22 to get

D(P,R) =
|(e)(α) + (f)(β) + (g)(γ)− h|

√

e2 + f2 + g2

To determine if the line and plane are parallel (and hence do not intersect),
we first recognize that the vector perpendicular to the plane is −→n = 〈e, f, g〉.
The direction of the line is given by 〈a, b, c〉 (why?), and all we now have to do
is take the dot product of the two and make sure the result is zero:

〈e, f, g〉 · 〈a, b, c〉 = 0

13. Find a formula for the angle between two non-parallel planes in space.
Also, find a formula for the angle between a line and plane in space which are
non-parallel.

To find the angle between two non-parallel planes, simply use the perpen-
dicular vectors for each plane, since they will preserve the angle between planes.
We already have a formula (equation 6.7) for the angle between vectors involv-
ing the dot product, or one can use the cross product formula (equation 6.12)
as well.

As for the angle between a line and plane, note that the sum of (1) the
angle between the line and the plane and (2) the angle between the line and
the vector perpendicular to the plane, must equal π

2 . Therefore, if you compute
(2), which is straight forward, then subtracting that value from π

2 yields (1).



Chapter 8

Independence, Basis, and

Dimension for Subspaces

of Rn

8.1 Subspaces of Rn

1. Determine if each of the following sets define a vector space over some field F.

(a) V = {〈x, y, 0〉 | x, y ∈ R} - yes

(b) V = {〈x, 1, z〉 | x, z ∈ Q} - no, closure properties are not satisfied

(c) V = {P (x) | P (x) is a polynomial with real coefficients} - yes

(d) V = {P (x) | P (x) is a cubic polynomial with complex coefficients} - no,
no vector identity.

(e) V = {〈x, y, z〉 | x, y, z ≥ 0} - no, no additive inverse.

(f) V = Q4×3, which are the rational 4 × 3 matrices. - yes, but only if
scalars are rational.

(g) V = Z3×3, which are the integer 3×3 matrices. - yes, but only if scalars
are integers.

(h) V is the set of all polynomials with integer coefficients. - yes, but only
if scalars are integers.

127
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2. Prove or disprove that the following vector subspace unions, U ∪ V, are
themselves vector subspaces.

(a) U = {〈0, y, 0〉 | y ∈ R} ,V = {〈0, 0, z〉 | z ∈ R}

No, the closure properties are not satisfied, as no vector of the form 〈0, y, z〉
can be in the union, but it should be for U ∪ V to be a vector space.

(b) U = {〈x, y, 0〉, |x, y ∈ R} ,V = {〈0, 0, z〉 | z ∈ R}

No, the same argument from part (a) holds here, except this time, no vector
of the form 〈x, y, z〉 is in the union.

(c) U = {〈x, y, 0〉 |x, y ∈ R} ,V = {〈x, 0, 0〉 |x ∈ R}

Yes, this is true since V ⊂ U, and U itself is a vector space.

3. Express the sum, U + V, of the following vector subspaces U and V as a
single vector subspace.

(a) U =
{

〈0, a, 0〉, | a ∈ R
}

,V =
{

〈0, 0, b〉, | b ∈ R
}

U+ V =
{

〈0, a, b〉, | a, b ∈ R
}

(b) U =
{

〈a, b, 0〉, | a, b ∈ R
}

,V =
{

〈0, 0, c〉, | c ∈ R
}

U+ V =
{

〈a, b, c〉, | a, b, c ∈ R
}

= R3

(c) U =
{

〈a, b, 0〉, | a, b ∈ R
}

,V =
{

〈a, 0, 0〉, | a ∈ R
}

U+ V = U

(d) U =
{

〈a, 0, b, 0, c, d, e, 0〉, | a, b, c, d, e ∈ R
}

,

V =
{

〈0, a, b, c, 0, 0, d, 0〉, | a, b, c, d ∈ R
}

U+ V =
{

〈a, b, c, d, e, f, g, 0〉, | a, b, c, d, e, f, g ∈ R
}

(e) U =
{

a−→u1 + b−→u2 + c−→u3, | a, b, c ∈ R
}

V =
{

a−→v1 + b−→v2 + c−→v3 + d−→v4 , | a, b, c, d ∈ R
}

,
for fixed vectors −→u1,

−→u2,
−→u3,

−→v1 , −→v2 , −→v3 , −→v4 ∈ R9 where −→u1,
−→u2 ∈ V.



8.1 Subspaces of Rn 129

U+ V =
{

a−→v1 + b−→v2 + c−→v3 + d−→v4 + e−→u3, | a, b, c, d, e ∈ R
}

4. Express the solutions to the following homogeneous systems as vector sub-
spaces of Rn, also state the dimension of each solution.

(a)
3x− 6y + 5z = 0
−x+ 3y − 2z = 0

→ S =
{〈

−a,
a

3
, a
〉 ∣

∣

∣ a ∈ R

}

(b)
x− 2y − 3z = 0

−2x+ 5y − 7z = 0
→ S = {〈29 a, 13 a, a〉 | a ∈ R}

(c)
w + 3x+ y + 2z = 0

2w − 3x+ 4y + 6z = 0
→ S =

{〈

−15

2
a− b, a,

9

2
a− b, b

〉 ∣

∣

∣

∣

a, b ∈ R

}

(d)
−2w + x+ y = 0

2w + 5x+ y − 2z = 0
−w + x+ y + z = 0

→ T =

{〈

a,−3

2
a,

7

2
a, −a

〉 ∣

∣

∣

∣

a ∈ R

}

Vector subspaces corresponding to (a), (b), and (d) have dimension 1, and (c)
has dimension 2.

5. Express the solutions to the following nonhomogeneous systems as vector
subspace translates of Rn, also state the dimension of each solution.

(a)
3x− 6y + 5z = −1
−x+ 3y − 2z = 5

→ T =

{

〈

−a,
a

3
, a
〉

+

〈

9,
14

3
, 0

〉∣

∣

∣

∣

a ∈ R

}

(b)
x− 2y − 3z = 3

−2x+ 5y − 7z = 2
→ T = {〈29 a, 13 a, a〉+ 〈19, 8, 0〉 | a ∈ R}

(c)
w + 3x+ y + 2z = −1

2w − 3x+ 4y + 6z = −2

→ T =

{〈

−15

2
a− b, a,

9

2
a− b, b

〉

+ 〈−1, 0, 0, 0〉
∣

∣

∣

∣

a, b ∈ R

}

( d)
−2w + x+ y = 1

2w + 5x+ y − 2z = 3
−w + x+ y + z = 2

→ S =

{〈

a,−3

2
a,

7

2
a, −a

〉

+ 〈0, 1, 0, 1〉
∣

∣

∣

∣

a ∈ R

}
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6. Explain why the following sets S are subspaces, or not, of the appropriate
vector space Rn:

(a) S = {〈a+ b+ 5, 2a+ 7b− 1, a− b+ 4〉 | a, b,∈ R}

No. No combinations of a and b will result in the zero vector, which is
required for S to be a subspace.

(b) S = {〈4a− b,−5a+ 7b, a− 3b,−10a+ π b〉 | a, b,∈ R}

Yes, all properties of being a subspace are satisfied.

(c) S = {〈5, a+ 3b, 0, a− b, π〉 | a, b,∈ R}

No. No combinations of a and b will result in the zero vector, which is
required for S to be a subspace.

(d) S = {〈a+ b, 0, 2a+ 7b, 0, a− b, 0, 0〉 | a, b,∈ R}

Yes, all properties of being a subspace are satisfied.

7. Show that U ∩ V is a subspace of Rn if both U and V are subspaces of Rn.
Does this generalize to the intersection of any finite number of subspaces?

We need to show that if −→u and −→v are elements of U∩V, then so is a−→u +b−→v ,
for scalars a and b. By the definition of intersection, if −→u ∈ U∩V, then −→u ∈ U

and −→u ∈ V. Furthermore, since U and V are themselves vector spaces, a−→u ∈ U

and a−→u ∈ V, thus implying that a−→u ∈ U ∩ V. A similar argument will show
that b−→v ∈ U∩V, and thus a−→u +b−→v ∈ U∩V. Clearly a similar argument holds
for an intersection of a finite number of subspaces.

8. Find U ∩ V for the following vector subspaces.

(a) U = {〈a, 0, b, 0〉 | a, b ∈ R}, V = {〈0, a, b, c〉 | a, b, c ∈ R}

U ∩ V = {〈0, 0, α, 0〉 |α ∈ R}

(b) U = {〈a, 0, b, 0, c, d, e, 0〉 | a, b, c, d, e ∈ R}
V = {〈0, a, b, c, 0, 0, d, 0〉 | a, b, c, d ∈ R}

U ∩ V = {〈0, 0, α, 0, 0, 0, β, 0〉 |α, β ∈ R}
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(c) U = {〈a, 0, b, 0, c, d, 0, e〉 | a, b, c, d, e ∈ R}
V = {〈0, a, b, c, 0, 0, d, e〉 | a, b, c, d, e ∈ R}

U ∩ V = {〈0, 0, α, 0, 0, 0, 0, β〉 |α, β ∈ R}

9. Let U be the subspace of Rn which is the solution space to the homogeneous

linear system A−→x =
−→
0 and V be the subspace of Rn which is the solution space

to another homogeneous linear system B−→x =
−→
0 . What homogeneous linear

system has the subspace U ∩ V as its solution space? Is there a homogeneous
linear system which has the subspace U+ V as its solution space?

One has to be careful here. It may be thought that vectors belonging to

U∩V satisfy (A+B)−→x =
−→
0 , however if A = −B, then U = V, but A+B = 0

and thus any vector will satisfy (A+B)−→x =
−→
0 .

Note however, that any vector in U ∩ V will satisfy

[

A
B

]

−→x =
−→
0 .

8.2 Independent and Dependent Sets of Vectors

in Rn

1. Compute the spanning setK for the subspace S corresponding to the solution
of each of the following homogeneous linear systems.

(a)

[

1 −2 1
4 −2 8

]

−→x =
−→
0 → K =

{〈

−7

3
,−2

3
, 1

〉}

(b)

[

8 −2 2 4
−4 1 −1 −2

]

−→x =
−→
0

→ K =

{〈

1

4
, 1, 0, 0

〉

,

〈

−1

4
, 0, 1, 0

〉

,

〈

−1

2
, 0, 0, 1

〉}

(c)





0 6 1 4
2 −2 −9 −1
−1 5 2 −1





−→x =
−→
0 → K =

{〈

−223

38
,−17

38
,−25

19
, 1

〉}

(d)





0 6
2 2
−1 5





−→x =
−→
0 → K = { }
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(e)





−2 1 4 2
2 3 −5 0
0 4 −2 2





−→x =
−→
0 → K =

{〈

3

4
,−1

2
, 0, 1

〉}

(f)

[

2 0 −4 2 9
3 1 −7 0 8

]

−→x =
−→
0

→ K =

{

〈2, 1, 1, 0, 0〉 , 〈−1, 3, 0, 1, 0〉 ,
〈

−9

2
,
11

2
, 0, 0, 1

〉}

2. For each of the homogeneous systems from problem 1, determine the maxi-
mum number of vectors that could possibly be in the spanning set. How does
this compare to the actual number of vectors in the spanning set?

(a) max is 3, actual is 1

(b) max is 4, actual is 3

(c) max is 4, actual is 1

(d) max is 2, actual is 0

(e) max is 4, actual is 1

(f) max is 5, actual is 3

3. Determine whether or not each of the following pairs of spanning sets K1

and K2 span the same subspace:

(a) K1 = {〈1, 0, 1〉, 〈0, 1, 1〉} , K2 = {〈2,−1, 1〉, 〈−1, 5, 4〉} → yes

(b) K1 = {〈1, 0, 1〉, 〈0, 1, 1〉} , K2 = {〈2,−1, 2〉, 〈−1, 5, 4〉} → no

(c) K1 = {〈2, 3,−1〉, 〈3, 3, 1〉} , K2 = {〈1, 0, 2〉, 〈−1,−6, 8〉, 〈2, 0, 5〉} → no

(d) K1 = {〈−1, 0, 1, 0〉, 〈2, 1, 2, 2〉} , K2 = {〈1, 1, 3, 2〉, 〈3, 1, 1, 2〉} → yes

(e) K1 = {〈2, 3,−4, 1〉, 〈−1, 2,−1, 1〉, 〈2, 1,−1, 1〉} ,
K2 = {〈1, 3,−2, 2〉, 〈3, 6,−6, 2〉} → no

(f) K1 = {〈2, 3,−4, 1〉, 〈−1, 2,−1, 1〉, 〈2, 1,−1, 1〉} ,
K2 = {〈1, 3,−2, 2〉, 〈3, 6,−6, 3〉, 〈−5, 9,−8, 2〉}→ yes

4. Prove that given a vector subspace S of Rn, S⊥, the set of all vectors or-
thogonal to every vector of S, is also a vector subspace of Rn.
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We need to show that if −→u ,−→v ∈ S⊥, then so is a−→u + b−→v . If we take an
arbitrary −→x ∈ S, notice that

(a−→u + b−→v ) · −→x = a−→u · −→x + b−→v · −→x
= a 0 + b 0

= 0.

5. Construct the spanning sets of the orthogonal subspace S⊥ to the subspaces
defined by the following spanning sets.

(a) K = {〈−2, 3〉}

rref
([

−2 3
])

=
[

1 − 3
2

]

→ K⊥ =

{

〈3
2
, 1〉

}

(b) K = {〈−2, 3, 3〉}

rref
([

−2 3 3
])

=
[

1 − 3
2 − 3

2

]

→ K⊥ =

{〈

3

2
, 1, 0

〉

,

〈

3

2
, 0, 1

〉}

(c) K = {〈−2, 3, 3〉, 〈0, 3,−7〉}

rref

([

−2 3 3
0 3 −7

])

=

[

1 0 −5
0 1 − 7

3

]

→ K⊥ =

{〈

5,
7

3
, 1

〉}

6. What is the orthogonal subspace to Rn?

The only vector perpendicular to every vector in Rn is the zero vector, thus

(Rn)
⊥
=

{−→
0
}

.

7. The following two sets, K1 and K2, span the same subspace. Explain what
this implies about the vectors of K2.

K1 = {〈1, 0, 1〉, 〈0, 1, 1〉} , K2 = {〈2,−1, 1〉, 〈−1, 5, 4〉, 〈1, 4, 5〉}

The vectors of K2 are not linearly independent. Also, each one of the vec-
tors from K2 can be expressed as a linear combination of vectors from K1.

8. Let S be a subspace of Rn. What is S+ S⊥? Explain your answer.

S + S⊥ = Rn, since if there are k linearly independent vectors in S, there
must be n − k directions perpendicular to all of these vectors, which implies
that S⊥ would have dimension n− k. Adding these dimensions together gives
dimension n, which is the same as that of Rn.
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9. Let S be a subspace of Rn. What is S ∩ S⊥? Explain your answer.

S ∩ S⊥ =
−→
0 since the only vector they can have in common is one that is

perpendicular to all in both, this is the zero vector only.

10. Let S be a subspace of Rn. What is the dimension of S⊥? Explain your
answer.

This was already described in problem 8. If S has dimension k, then S⊥ has
dimension n− k.

11. Find the orthogonal complement S⊥ for the following subspaces S, and give
their dimensions:

(a) S =
{

〈0, 0, a, b, 0, c, 0〉
∣

∣a, b, c ∈ R
}

S⊥ =
{

〈d, e, 0, 0, f, 0, g〉
∣

∣d, e, f, g ∈ R
}

(b) S =
{

〈a, 0, b, c, d, 0, 0, e〉
∣

∣a, b, c, d, e ∈ R
}

S⊥ =
{

〈0, f, 0, 0, 0, g, h, 0〉
∣

∣f, g, h ∈ R
}

8.3 Basis and Dimension for Subspaces of Rn

1. Determine which of the following sets are bases for R2:

(a) {〈2, 3〉, 〈2, 1〉} → rref

([

2 3
2 1

])

=

[

1 0
0 1

]

→ basis

(b) {〈−2, 3〉, 〈−3, 1〉} → rref

([

−2 3
−3 1

])

=

[

1 0
0 1

]

→ basis

(c) {〈1,−2〉, 〈−3, 6〉} → rref

([

1 −2
−3 6

])

=

[

1 −2
0 0

]

→ not a basis

(d) {〈0, 2〉, 〈1, 4〉} → rref

([

0 2
1 4

])

=

[

1 0
0 1

]

→ basis
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2. Determine which of the following sets are bases for R3:

(a) {〈2, 3, 1〉, 〈0, 2, 1〉, 〈−1, 2, 1〉} → rref









2 3 1
0 2 1
−1 2 1







 =





1 0 0
0 1 0
0 0 1





→ basis

(b) {〈−2, 0, 1〉, 〈0, 2, 0〉, 〈0, 0, 5〉} → rref









−2 0 1
0 2 0
0 0 5







 =





1 0 0
0 1 0
0 0 1





→ basis

(c) {〈1, 1, 0〉, 〈0, 1, 1〉, 〈1, 0, 1〉} → rref









1 1 0
0 1 1
1 0 1







 =





1 0 0
0 1 0
0 0 1





→ basis

(d) {〈1, 1, 0〉, 〈0, 1, 1〉, 〈1, 0, 1〉} → rref









3 −2 2
1 −1 0
−5 3 −4







 =





1 0 2
0 1 2
0 0 0





→ not a basis

3. Compute the row rank of the following matrices:

(a) rank









1 3 1
−2 1 −2
0 8 1







 = rank



rref









1 3 1
−2 1 −2
0 8 1













= rank









1 0 0
0 1 0
0 0 1









→ row rank is three

(b) rank









−3 −4 3
4 1 2
5 −2 7







 = rank



rref









−3 −4 3
4 1 2
5 −2 7













= rank









1 0 11
13

0 1 − 18
13

0 0 0









→ row rank is two
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(c) rank

















−3 −4 3
4 1 2
5 −2 7
3 −2 1

















= rank









rref

















−3 −4 3
4 1 2
5 −2 7
3 −2 1

























= rank

















1 0 0
0 1 0
0 0 1
0 0 0

















→ row rank is three

(d) rank

















−3 −4 3
2 2 10
5 −2 7
8 −6 4

















= rank









rref

















−3 −4 3
2 2 10
5 −2 7
8 −6 4

























= rank

















1 0 0
0 1 0
0 0 1
0 0 0

















→ row rank is three

(e) rank









−3 −4
4 1
5 −2







 = rank



rref









−3 −4
4 1
5 −2













= rank









1 0
0 1
0 0









→ row rank is two

(f) rank









−3 −4 3 0
4 1 2 −1
5 −2 7 3







 = rank



rref









−3 −4 3 0
4 1 2 −1
5 −2 7 3













= rank









1 0 11
13 0

0 1 − 18
13 0

0 0 0 1









→ row rank is three

4. Determine the maximum possible row rank for each of the matrices from
problem 3.

(a) 3 (b) 3 (c) 3 (d) 3 (e) 2 (f) 3

5. Construct a basis for each of the following subspaces of Rn.
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(a) the set of all vectors in R3 of the form 〈a, b, a〉

B = {〈1, 0, 1〉, 〈0, 1, 0〉}

(b) the set of all vectors in R4 of the form 〈a, b,−a,−b〉

B = {〈1, 0,−1, 0〉, 〈0, 1, 0,−1〉}

(c) the set of all vectors in R3 of the form 〈a, b, a− b〉

B = {〈1, 0, 1〉, 〈0, 1,−1〉}

(d) the set of all vectors in R4 of the form 〈a, 2b, a− 3b, 2a+ 3b+ c〉

B = {〈1, 0, 1, 2〉, 〈0, 2,−3, 3〉, 〈0, 0, 0, 1〉}

6. Let C = (A | 0) be the augmented matrix for the homogeneous linear system

A−→x =
−→
0 , where A ∈ Rm×n. Now apply rref to this matrix C in order to read

off the solutions −→x to this system. You will get from rref(C) that the solutions
−→x are of the form

−→x = xk1

−→u1 + xk2

−→u2 + · · ·+ xkp

−→up

where xk1 , xk1 , . . . , xkp
are arbitrary solution variables from −→x , and −→u1,

−→u2, . . . ,−→up ∈ Rn are p fixed solutions. Are the column vectors −→u1,
−→u2, . . . ,

−→up automat-
ically a basis of the subspace S of Rn consisting of all the solutions −→x to the

homogeneous system A−→x =
−→
0 ? Explain your answer in detail.

Indeed the answer is yes! To see this, consider the fact that A−→uj =
−→
0 for

1 ≤ j ≤ p. Therefore, any linear combination of the −→uj ’s will also be a solution

to A−→x =
−→
0 , i.e. we can take our solution to be of the form given above and

thus

A−→x = A
(

xk1

−→u1 + xk2

−→u2 + · · ·+ xkp

−→up

)

= xk1A
−→u1 + xk2A

−→u2 + · · ·+ xkp
A−→up

Since the xk’s are arbitrary, the −→uj ’s form a subspace of Rn. Of course, the

bigger question to ask is: Does this subspace contain all solutions to A−→x =
−→
0 ?

If it does not, then there is another vector, call it −−→up+1, which we missed the
first time around. There can be at most n of these vectors (why?), so we can

conclude that we do cover all possible solutions to A−→x =
−→
0 , and the solutions

form a subspace of Rn.
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7. (a) Let S be a subspace of Rn with a basis B =
{−→u1,

−→u2, . . . ,
−→up

}

. Explain
in detail how you can find a basis for the orthogonal complement S⊥.

We can construct a matrix B whose rows are the given vectors. Then, solv-

ing the equation B−→x =
−→
0 will give us a basis for S⊥. Remember, that when

performing matrix multiplication, you multiply the row of the left matrix by
the column of the right matrix, which is equivalent to the dot product. So
when the dot product is zero, the vectors are orthogonal.

(b) What is the dimension of S⊥ in terms of n and the dimension p of S
Explain why this is true.

The dimension of S⊥ is n− p, since S+ S⊥ = Rn, which has dimension n.

8. For the following subspaces S of Rn, find a basis for both S and its orthog-
onal complement S⊥, giving the dimension of each.

(a) S =
{

〈0, 0, a, b, 0, c, 0〉
∣

∣a, b, c ∈ R7
}

S⊥ =
{

〈d, e, 0, 0, f, 0, g〉
∣

∣d, e, f, g ∈ R
}

(b) S =
{

〈a, 0, b, c, d, 0, 0, e〉
∣

∣a, b, c, d, e ∈ R7
}

S⊥ =
{

〈0, f, 0, 0, 0, g, h, 0〉
∣

∣f, g, h ∈ R
}

8.4 Vector Projection onto a Subspace of Rn

1. Verify that if S is a one-dimensional subspace of Rn spanned by the sin-
gle vector −→w , then the formula for projS(

−→v ) reduces to the formula given by
proj−→w (−→v ).

Equation 8.31 is a good place to start. So in this case C = −→w where −→w is
treated as an n× 1 matrix. Thus, we have

projS (
−→v ) =

(−→w
(−→w T−→w

)−1 −→w T−→v
)T
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But notice that −→w T−→w = −→w · −→w = |−→w |2, and therefore, we get

projS (
−→v ) =

(−→w
(−→w T−→w

)−1 −→w T−→v
)T

=
1

|−→w |2
(−→w−→w T−→v

)T

=
1

|−→w |2
(−→v T−→w−→w T

)

=
−→v · −→w
|−→w |2

−→w T

which is the definition of proj−→w (−→v ).

2. Given the basis B = {−→w1,
−→w2, . . . ,

−→wk} for a subspace of Rn, prove that the
matrix W ∈ Rk×k, defined by Wi,j =

−→wi · −→wj , satisfies W
T = W .

This is obviously true since the vectors are real and thus −→wj · −→wi =
−→wi · −→wj ,

which shows that Wj,i = Wi,j and thus WT = W .

3. Given the basis B = {−→w1,
−→w2, . . . ,

−→wk} for a subspace of Cn, and W ∈ Ck×k

defined by Wi,j =
−→wi · −→wj , determine a relationship between W and WT .

Using the same argument as the last problem, we know that−→wj ·−→wi =
−→wi · −→wj ,

by definition of the complex dot product. This implies that Wj,i = Wi,j and
thus WT = W .

4. Project the following vectors on the subspace of R3 generated by the basis
{〈1, 1, 0〉, 〈0, 0, 1〉}.

(a) projS(〈−1, 2, 1〉) =
〈

1
2 ,

1
2 , 1

〉

(b) projS(〈−1, 2, 0〉) =
〈

1
2 ,

1
2 , 0

〉

(c) projS(〈0, 2, 3〉) = 〈1, 1, 3〉

5. Modify the vector projection formula given in equation (8.31) for when the
vectors are complex valued.

All that is required is to replace AT with A
T
. This is usually denoted A∗

and is called the Hermitian transpose of the matrix A. Thus

projS(
−→v ) = A∗−→v

6. Project the vector −→v = 〈−2 + i, 6− i, 3 + 2i〉 onto the subspace of C3 gen-
erated by the basis {〈i, 1, 1 + i〉, 〈0, i, 1− i〉}.
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projS(〈−2 + i, 6− i, 3 + 2i〉) =
〈

37
11 i,

53
11 ,

21
11 + 21

11 i
〉

Note that −→v − projS(〈−2 + i, 6− i, 3+ 2i〉) =
〈

−2− 26
11 i,

13
11 − i, 12

11 + 1
11 i

〉

,
and

〈

−2− 26

11
i,
13

11
− i,

12

11
+

1

11
i

〉

· 〈i, 1, 1 + i〉 = 0

〈

−2− 26

11
i,
13

11
− i,

12

11
+

1

11
i

〉

· 〈0, i, 1− i〉 = 0

Do not forget to take the conjugate of the second vector in each dot product!

7. Prove that the dot product matrix W , when considering a set of orthogonal
vectors, is diagonal. Furthermore, what do the values on the diagonal corre-
spond to?

Remember that Wi,j = −→wi · −→wj . If i 6= j then −→wi 6= −→wj and therefore
−→wi · −→wj = 0. This implies that any off-diagonal entry is zero. The diagonal

entries are given by −→wi 6= −→wi = |−→wi|2. This the matrix W is diagonal with
diagonal entries equal to the magnitude squared of each vector. In the case of
an orthonormal set of vectors, we end up with the identity matrix.

8. Determine if each of the following sets of vectors constitute an orthogonal set:

(a) {〈1, 0,−1〉, 〈0, 1, 0〉, 〈1, 0, 1〉}

W =





2 0 0
0 1 0
0 0 2



 → set is orthogonal

(b) {〈1, 1, 1〉, 〈2,−2, 2〉, 〈6, 0,−6〉}

W =





3 2 0
2 12 0
0 0 72



 → set is not orthogonal

(c) {〈1, 2, 1〉, 〈2,−2, 2〉, 〈6, 0,−6〉}

W =





6 0 0
0 12 0
0 0 72



 → set is orthogonal

(d) {〈1, 1,−1, 1〉, 〈0, 1, 0,−1〉, 〈−2, 1, 2, 2〉}

W =





4 0 −1
0 2 −1
−1 −1 13



 → set is not orthogonal
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(e) {〈1, 1,−1, 1〉, 〈0, 1, 0,−1〉, 〈−3, 2, 1, 2〉}

W =





4 0 0
0 2 0
0 0 18



 → set is orthogonal

9. Convert each set from problem 8 that was determined to be an orthogonal
set into an orthonormal basis.

All we have to do is make each vector unit length from parts (a), (c), and
(e). Notice the length squared of each vector is given along the diagonal, so
the answers are pretty simple.

(a)

{

1√
2
〈1, 0,−1〉, 〈0, 1, 0〉, 1√

2
〈1, 0, 1〉

}

(c)

{

1√
6
〈1, 2, 1〉, 1√

12
〈2,−2, 2〉, 1√

72
〈6, 0,−6〉

}

(c)

{

1

2
〈1, 1,−1, 1〉, 1√

2
〈0, 1, 0,−1〉, 1√

18
〈−3, 2, 1, 2〉

}

10. Compute the distance from the plane spanned by the vectors {〈1, 0, 1〉,
〈1, 2,−1〉} to the point (8, 8, 1).

We simply need to compute |−→v − projS(
−→v )|, where S is the subspace spanned

by the two vectors which create the plane. We apply the subspace vector pro-
jection formula to get |projS(−→v )| =

〈

25
3 , 23

3 , 2
3

〉

. Then

|−→v − projS(
−→v )| =

∣

∣

∣

∣

〈

−1

3
,
1

3
,
1

3

〉∣

∣

∣

∣

=
1√
3

11. Prove Theorem 8.4.1.

The proof is straight forward. Notice that if we assume that B is an or-
thonormal basis, then W is the identity matrix. Using this fact in equation
(8.31) gives projS(

−→v ) = V TCT , where Vi =
−→wi · −→v . This yields

projS(
−→v ) = (−→w1 · −→v )−→w1 + (−→w2 · −→v )−→w2 + · · ·+ (−→wk · −→v )−→wk

Notice though, that since −→v ∈ S, projS(
−→v ) = −→v , which gives

−→v = (−→w1 · −→v )−→w1 + (−→w2 · −→v )−→w2 + · · ·+ (−→wk · −→v )−→wk.

A similar argument holds conversely.
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12. Is vector projection linear? That is, for a subspace S of Rn and two vectors
−→u ,−→v ∈ Rn and scalar c, determine if the following two properties hold. If the
properties do not hold, give an example.

(a) projS(c
−→v ) = c projS(

−→v )

(b) projS(
−→u +−→v ) = projS(

−→u ) + projS(
−→v )

By construction of the projection (which is the result of matrix multipli-
cation), and the fact that the dot product is also linear, both properties hold.
Refer to equations (8.31) and (8.32) for verification of this fact.

13. Let S be a subspace of Rn with basis B = {−→w1,
−→w2, . . . ,

−→wk} and let −→v ∈ Rn.
Determine the conditions on −→v under which the following condition holds:

projS(
−→v ) = proj−→w1

(−→v ) + proj−→w2
(−→v ) + · · ·+ proj−→wk

(−→v )

Theorem 8.4.1 states this property, so if the basis is orthonormal, we get
the desired result.

14. What is projS (projS(
−→v ))?

First, notice that projS(
−→v ) ∈ S, as a result, performing the projection once

more results in no new change. Thus projS (projS(
−→v )) = projS(

−→v ). This is
a standard property of a projection operator (call it P ), as they satisfy the
property P ◦ P = P , where ◦ is the composition of operators.

15. Let S be a subspace of Rn where B = {−→w1,
−→w2, . . . ,

−→wk} is a basis of S.
Can we extend B into a full basis of all of Rn? Hint: Consider a basis of the

orthogonal complement S⊥.

From section 8.3 homework problems, we know that if we can find the or-

thogonal subspace S⊥, to S by solving B−→x =
−→
0 , where B has as its rows

the vectors of B. Each of these vectors which satisfy B−→x =
−→
0 are orthogonal

to S, and are linearly independent, thus completing a set of basis vectors for Rn.

16. (a) Let S be a subspace of Rn with basis B = {−→w1,
−→w2,

−→w3}. Show that the
set B1 = {−→q1 ,−→q2 ,−→q3} is an orthogonal basis of S, where

−→q1 = −→w1,
−→q2 = −→w2 − proj−→q1 (

−→w2),
−→q3 = −→w3 − proj−→q1 (

−→w3)− proj−→q2 (
−→w3)

(b) Generalize part (a) to a subspace S of any dimension.

See the next section on the Gram-Schmidt Orthonormalization process for
answers to this problem.
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17. Let U and V be two subspaces of Rn. For −→w ∈ Rn, find conditions on U

and V such that

projU+V(
−→w ) = projU(

−→w ) + projV(
−→w )

If the basis vectors for U and V are mutually orthogonal, the above formula
holds.

18. (Fourier Series) Let V be the real vector space of all continuous functions
f : [0, 2π] → R. Define the the dot product of two elements f(x) and g(x) of
V by

f(x) · g(x) =
∫ 2π

0

f(x)g(x) dx

Compute the vector projection projS(
−→v ), for −→v = ex ∈ V, and S, the subspace

of V, having basis

B =

{

1√
2π

,
1√
π

cos(x),
1√
π

sin(x),
1√
π

cos(2x),
1√
π

sin(2x)

}

(You should first check if B is orthonormal.) Now graph together both −→v and
projS(

−→v ). Is projS(
−→v ) a reasonable approximation of −→v , and how can you

make projS(
−→v ) into a better approximation of −→v ?

It is easy enough to check that B is an orthonormal set, and we will use
equation (8.33) as a result of this fact.

projS (e
x) =

∫ 2π

0

1√
2π

ex dx
1√
2π

+

∫ 2π

0

1√
π

cos(x) ex dx
1√
π

cos(x)

+

∫ 2π

0

1√
π

sin(x) ex dx
1√
π

sin(x)

+

∫ 2π

0

1√
π

cos(2x) ex dx
1√
π

cos(2x)

+

∫ 2π

0

1√
π

sin(2x) ex dx
1√
π

sin(2x)

Using the above formula, we have

projS (e
x) =

e2π − 1√
2π

1√
2π

+
e2π − 1

2
√
π

1√
π

cos(x)

− e2π − 1

2
√
π

1√
π

sin(x) +
e2π − 1

5
√
π

1√
π

cos(2x)

− 2e2π − 2

5
√
π

1√
π

sin(2x)
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Figure 8.1: The exponential function and its projection onto the given basis.

Notice that the approximation above is not that great, mainly due to the
periodicity of the basis functions. To get a better approximation, one can sim-
ply add more basis functions, however there will be problems (except perhaps
in the limiting sense) of the accuracy at the endpoints x = 0 and x = 2π.

8.5 The Gram-Schmidt Orthonormalization

Process

1. Explain what happens if one attempts to apply the Gram-Schmidt or-
thonormalization process to a set of vectors that is linearly dependent. It may
be easiest to assume that K = {−→v1 ,−→v2 , . . . ,−→vk,−−→vk+1} and that

−−→vk+1 =

k
∑

j=1

ak
−→vk

for some scalars ak, 1 ≤ j ≤ k, of which at least one is nonzero.

The vector which is a linear combination of the other vectors will become
the zero vector when the Gram-Schmidt orthonormalization process is applied.

2. What happens when one applies the Gram-Schmidt orthonormalization pro-
cess to a set of vectors that are already mutually orthogonal?
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The process simply normalizes each vector.

3. Convert each of the following sets of vectors to an orthonormal set of vectors:

(a) K1 = {〈−2, 3〉, 〈6, 1〉}

P1 =
{〈

− 2√
13
, 3√

13

〉

,
〈

3√
13
, 2√

13

〉}

(b) K2 = {〈1, 0, 1〉, 〈0,−1, 1〉}

P2 =
{〈

1√
2
, 0, 1√

2

〉

,
〈

− 1√
6
,− 2√

6
, 1√

6

〉}

(c) K3 = {〈1, 0, 1, 1〉, 〈0,−1, 2, 1〉, 〈3, 1, 0,−2〉}

P3 =
{〈

1√
3
, 0, 1√

3
, 1√

3

〉

,
〈

− 1√
3
,− 1√

3
, 1√

3
, 0
〉

,
〈

4
5
√
3
,− 1

5
√
3
, 3
5
√
3
,− 7

5
√
3
, 0
〉}

(d) K4 = {〈1, 1, 0, 1〉, 〈2, 1,−1, 1〉, 〈−2,−1, 1, 0〉}

P4 =
{〈

1√
3
, 1√

3
, 0, 1√

3

〉

,
〈

2√
15
,− 1√

15
,− 3√

15
,− 1√

15

〉

,
〈

− 1√
15
,− 2√

15
,− 1√

15
, 3√

15
, 0
〉}

4. Project each of the following vectors onto the corresponding orthonormal
basis found in problem 3.

For each of these parts, we use equation (8.33).

(a) 〈1, 1, 1〉 onto K2

proj
K2

(〈1, 1, 1〉) =
〈

4
3 ,

2
3 ,

2
3

〉

(b) 〈3, 4,−2〉 onto K2

proj
K2

(〈3, 4,−2〉) =
〈

8
3 ,

13
3 ,− 5

3

〉

(c) 〈4,−5,−3〉 onto K2

projK2
(〈4,−5,−3〉) = 〈0,−1, 1〉

(d) 〈2, 1, 2, 3〉 onto K3

projK3
(〈2, 1, 2, 3〉) =

〈

56
25 ,

11
25 ,

42
25 ,

77
25

〉
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(e) 〈3, 5,−5, 7〉 onto K3

proj
K3

(〈3, 5,−5, 7〉) =
〈

74
25 ,

382
75 ,− 371

75 , 524
75

〉

(f) 〈3, 5,−5, 7〉 onto K4

proj
K4

(〈3, 5,−5, 7〉) =
〈

16
3 ,

8
3 ,− 8

3 , 7
〉

5. A square matrix P ∈ Rn×n whose columns form an orthonormal basis of Rn

is called an orthogonal matrix. Prove the following identities. Hint: Consider

the matrix multiplication PPT .

(a) P−1 = PT

Clearly PPT = I since PPT is the dot product matrix. Also, P is invertible
since its columns form a basis for Rn. Therefore, taking left inverse of both
sides yields the result.

(b) det(P ) = ±1

Note from part (a) that P PT = I, with det(AT ) = det(A), thus

det(P PT ) = det(I)

det(P ) det(PT ) = 1

det(P ) det(P ) = 1

det(P )2 = 1

det(P ) = ±1

6. Use problem 5 to show that any real matrix A of the form

A =
1√

a2 + b2

[

a b
−b a

]

is orthogonal if a2 + b2 6= 0.

Under the given assumption, it is easy to verify both property (a) and
property (b) of problem 5, and since P PT = I, the columns of A form an
orthonormal basis for R2.

7. Show that every 2× 2 rotational matrix, given by

[

cos(θ) sin(θ)
− sin(θ) cos(θ)

]
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for some angle θ, is an orthogonal matrix.

Clearly the rotation matrix given above has the same form as that of A from
problem 6. Furthermore, notice that each entry in A satisfies −1 ≤ Ai,j ≤ 1.

Also, notice that since cos(θ) =
a√

a2 + b2
and sin(θ) =

b√
a2 + b2

, we still sat-

isfy cos2(θ) + sin2(θ) = 1.

8. Use problem 5 to show that if both P and Q are orthogonal matrices of the
same size, then their two products PQ and QP are also orthogonal.

Since P and Q are orthogonal matrices, we have that PPT = QQT = I.
We need to show that (PQ)(PQ)T = I. However, using the rules of transpose,
we get that

(PQ)(PQ)T = (PQ)(QTPT )

= P (QQT )PT

= P (I)PT

= PPT

= I

which proves that PQ is orthogonal. The same argument hold for QP by swap-
ping P and Q in the above argument.

9. Let B = {−→w1,
−→w2, . . . ,

−→wn} be any orthogonal basis of Rn. Let S be the sub-
space of Rn with basis B1 = {−→w1,

−→w2, . . . ,
−→wk} for k < n. What is a basis of S⊥?

Since B is orthonormal, then by definition, −→wi · −→wj = 0 for 1 ≤ i ≤ k and
k + 1 ≤ j ≤ n. Thus setting

B2 = {−−−→wk+1,
−−−→wk+2, . . . ,

−→wn}

will yield a basis for S⊥.

10. Let B be any finite orthonormal subset of Rn. Prove that B is an in-
dependent set. Is this also true if B is merely orthogonal? Is any n-element
orthonormal subset of Rn automatically a basis of Rn?

Let us assume, for a second, that there is a vector, −−→vk+1 in B = {−→v1 ,−→v2 , . . . ,−→vk,−−→vk+1} which is linearly dependent. As a result, we can express this vector
as follows:

−−→vk+1 =

k
∑

i=1

ai
−→vi ,
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where not all of the ai’s are all zero. But since B is an orthonormal subset,
−−→vk+1 · −→vj = 0 for all 1 ≤ j ≤ k. Let us assume that ap 6= 0 (at least one of the
ai’s is not zero), then

−−→vk+1 · −→vp =

k
∑

i=1

ai
−→vi · −→vp

= ap
−→vp · −→vp

= ap |−→vp|2 > 0

But this is a contradiction to the fact that all k + 1 vectors were orthogonal.
Note that there was no requirement on the vectors being of unit length, thus
it is true if B is merely orthogonal. The final question can also be answered in
the affirmative.



Chapter 9

Linear Maps from Rn to Rm

9.1 Basics About Linear Maps

1. Given a linear map T : Rm → Rm, expressed in terms of matrix multipli-
cation by A−→x = −→y , where A is invertible, does A−1y = x correspond to the
inverse map T−1 : Rm → Rm?

If T (−→x ) = −→y , then we should have that T−1(−→y ) = −→x . If T is represented
by the matrix A, then we have A−→x = −→y . Since A is invertible, we can left
multiply by A−1 on both sides, yielding A−1A−→x = A−1−→y , or A−1−→y = −→x ,
thus A−1 is the matrix corresponding to T−1.

2. For each of the given linear maps, determine the matrix A such that T (−→x ) =
A−→x .

(a) A

[

2 1
1 2

]

=

[

0 1
1 1

]

→ A =

[

− 1
3

2
3

1
3

1
3

]

(b) A

[

2 1
1 2

]

=





0 1
1 1
1 0



 → A =





− 1
3

2
3

1
3

1
3

2
3 − 1

3





(c) A





1 0 1
0 1 1
1 0 0



 =

[

0 1 1
1 1 0

]

→ A =

[

0 1 0
−1 1 2

]

(d) A





1 1 0
1 2 0
1 0 −1



 =





0 0 1
1 1 1
2 0 1



 → A =





2 −1 −1
3 −1 −1
6 −3 −1





149
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3. Compute the inverse map, T−1, to the maps from problem 2 parts (a) and
(d).

(a) A−1 =

[

−2 1
1 1

]

(d) A−1 =





−1 1 0
− 3

2 2 − 1
2

− 3
2 0 1

2





4. So far, we have considered linear maps from Rn to Rm where we know the
image of a basis of Rn. Consider the following map:

T (〈1, 2, 0, 1〉) = 〈−5,−1〉,
T (〈−1, 0, 3, 2〉) = 〈8, 14〉

Explain why this map cannot be defined by a unique matrix A ∈ R2×4?

We would need to know the image of four independent vectors in R4 to
actually construct a unique mapping (since inverses are unique). With a non-
invertible matrix, which is the problem here when we attempt to solve equation
(9.14), we are not guaranteed a unique solution, so we either have no solution
or an infinite number of solutions.
5. Construct two 2× 4 matrices that satisfy the map given in problem 4.

The following are two matrices which will work:

A1 =

[

0 −3 2 1
−6 2 2 1

]

, A2 =

[

−17 6 −3 0
−5 2 3 0

]

To compute a matrix A which works for this problem, we simply solve the
following equation:

[

a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4

]









1 −1
2 0
0 3
1 2









=

[

−5 8
−1 14

]

Notice that this will result in four equations in eight unknowns. So there could
possibly be a four-dimensional solution set to this problem.

6. Define Ab and Ac to be the matrices corresponding to the linear maps from
parts (b) and (c) of problem 2. Verify the following:

Both of these are straight forward calculations. First, we compute AcAb:

AcAb =





− 1
3

2
3

1
3

1
3

2
3 − 1

3





[

0 1 0
−1 1 2

]

=

[

1
3

1
3

2 −1

]
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Thus, the composition of mappings applied to each vector are given by:

(a) AcAb

[

2
1

]

=

[

1
3

1
3

2 −1

] [

2
1

]

=

[

1
3

]

(b) AcAb

[

1
2

]

=

[

1
3

1
3

2 −1

] [

1
2

]

=

[

1
0

]

7. Construct a linear map from R2 to the subspace of R3 given by

S = {〈x, 0, z〉 |x, z,∈ R}
The idea here, is that we need to construct a matrix A ∈ R3×2 such that

the image under the map A gives S. We can pick a basis of R2 to send to S,
and basis will do, but let us pick the standard basis. This yields the following
two equations





a1,1 a1,2
a2,1 a2,2
a3,1 a3,2





[

1
0

]

=





1
0
0



 ,





a1,1 a1,2
a2,1 a2,2
a3,1 a3,2





[

0
1

]

=





0
0
1





These equations are easy to solve, as we end up with




a1,1
a2,1
a3,1



 =





1
0
0



 ,





a1,2
a2,2
a3,2



 =





0
0
1





Thus a matrix A which satisfies the desired property is given by

A =





1 0
0 0
0 1





8. For the linear map T in Example 9.1.4, find the image T (S) of the subspace

S = {a 〈1, 2,−3〉+ b 〈−4, 5, 1〉 | a, b ∈ R}
and inverse image T−1(K) of the subspace

K = {a 〈5, 4, 6, 5〉+ b 〈6, 5, 5, 9〉+ c 〈−1, 2,−3, 7〉 | a, b, c ∈ R}
Give a basis and the dimension for both the image T (S) and the inverse image
T−1(K).

The image of T (S) is found by taking linear combinations of T (〈1, 2,−3〉)
and T (〈−4, 5, 1〉), so

T (S) = {T (a 〈1, 2,−3〉+ b 〈−4, 5, 1〉) | a, b ∈ R}
= {a T ( 〈1, 2,−3〉) + b T (〈−4, 5, 1〉) | a, b ∈ R}
= {a T ( 〈1, 2,−3〉) + b T (〈−4, 5, 1〉) | a, b ∈ R}
= {a 〈0, 2, 10,−10〉+ b 〈−24, 7,−29, 9〉 | a, b ∈ R}
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Since the two given vectors in the above line are clearly independent, the di-
mension of T (S) is two.

To find the inverse image of K, we need to find the subspace, S of R3 such
that T (S) ⊆ K ⊂ R4. In matrix multiplication form, this looks like









5 −1 1
1 2 1
7 0 −1
0 1 4













x
y
z



 = a









5
4
6
5









+ b









6
5
5
9









+ c









−1
2
−3
7









In augmented matrix form, we row reduce to get

rref

















5 −1 1 5 6 −1
1 2 1 4 5 2
7 0 −1 6 5 −3
0 1 4 5 9 7

















=









1 0 0 1 1 0
0 1 0 1 1 0
0 0 1 1 2 0
0 0 0 0 0 1









We therefore end up with x = a+ b, y = a+ b, z = a+ 2b and c = 0. So the
subspace of R3 that is our solution is

S = {a 〈1, 1, 1〉+ b 〈1, 1, 2〉 | a, b ∈ R}

9. Let T : R2 → R2 have the rule

T (〈x, y〉) = x 〈cos(θ),− sin(θ)〉+ y 〈sin(θ), cos(θ)〉

Show that T is a linear map and explain what it does geometrically.

Notice that this map can be written as

T

([

x
y

])

=

[

cos(θ) sin(θ)
− sin(θ) cos(θ)

] [

x
y

]

,

which implies that T is simply a rotation transformation. Since we have ex-
pressed it as a matrix multiplication, clearly T is a linear transformation.

10. Let S be a subspace of Rn, and T : Rn → Rn be defined by T (−→v ) =
projS(

−→v ), for −→v ∈ R.

(a) Is the function T a linear map? Explain why if it is, but if it is not give
an example to illustrate why not.

Since the projection of a vector can be written as matrix multiplication (see
the previous chapter), it is indeed linear.
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(b) If the function T in part (a) is a linear map, what is the image T (Rn)?

The image of T (Rn) is S since S ⊆ Rn and T (S) = S.

(c) If the function T in part (a) is a linear map, what is T−1
(−→
0 n

)

?

So we must determine which vectors, when projected, end up being
−→
0 .

Clearly, if −→v is a vector orthogonal to a basis of S, then this will be true, as
the dot product of −→v with any vector in a basis for S must be zero. Therefore,

we know that at least S⊥ ⊆ T−1
(−→
0 n

)

. Are there any more vectors that could

be in T−1
(−→
0 n

)

? The answer is no, due to the reasoning already given.

11. (a) Let T : Rn → Rm and S : Rm → Rk be two linear maps. Show that
their composite, S ◦ T : Rn → Rk, is also a linear map. Recall that the com-
posite function S ◦ T : Rn → Rk has the rule (S ◦ T )(−→v ) = S (T (−→v )), for all
−→v ∈ Rn.

If T is a linear map, then T (−→x ) can be represented by a matrix multipli-
cation A−→x , where A ∈ Rm×n. Similarly, S can be represented by a matrix
B ∈ Rk×m. So S ◦ T should be represented by the matrix BA ∈ Rk×n. To see
this, notice that

S (T (−→v )) = S (A−→v )

= BA−→v

Now since BA ∈ Rk×n, we automatically get that S ◦ T is linear, for

S ◦ T (a−→u + b−→v ) = BA (a−→u + b−→v )

= aBA (−→u ) + bBA (b−→v )

= aS ◦ T (−→u ) + b S ◦ T (−→v )

(b) Let K be a subspace of Rk. Explain why the inverse image is

(S ◦ T )−1 (K) = T−1
(

S−1 (K)
)

.

This is true due to function composition, where (f ◦ g)−1 = g−1f−1.
Furthermore, if A and B were square, we could also use the property that
(AB)−1 = B−1A−1.

12. Let T : Rn → Rm be a linear map that has an inverse function T−1 : Rm →
Rn. Prove that T−1 is also a linear map and n = m.

For any two vectors in −→u and −→v , we need to show that T−1(−→u + −→v ) =
T−1(−→u )+T−1(−→v ), and also that T−1(c−→u ) = cT−1(−→u ) for an arbitrary scalar



154 Chapter 9. Linear Maps from Rn to Rm

c. First note that since −→u and −→v are in the image of T , there exists −→x and −→y
such that T (−→x ) = −→u and T (−→y ) = −→v . Therefore,

T−1(−→u + −→v ) = T−1 (T (−→x ) + T (−→y ))

= T−1 (T (−→x +−→y ))

= −→x +−→y
= T−1(−→u ) + T−1(−→v )

Similarly,

T−1(c−→u ) = T−1 (c T (−→x )))

= T−1 (T (c−→x )))

= −→c x
= c T−1(−→u )

13. Let T : Rn → Rn be a linear map which has an inverse linear map
T−1 : Rn → Rn. Prove that if T can be written as the matrix multipli-
cation T (−→x ) = A−→x , then T−1 can be written as the matrix multiplication
T−1(−→y ) = A−1−→y .

Let us assume that the matrix corresponding to T−1 is B. From prob-
lem 11, we know that T−1(T (−→x )) = −→x , and thus in matrix form, we have
BA−→x = −→x , thus BA = In. Similarly, we also have that AB = In by con-
sidering T

(

T−1(−→x )
)

= −→x . Notice that this is the definition of B being the
multiplicative inverse to A, and thus T−1 has matrix representation A−1.

14. Let T : Rn → Rn be a linear map and B be a basis of Rn. Show that T
has an inverse linear map T−1 if and only if T (B) is also a basis of Rn. This
says that T is invertible if and only if T sends a basis to a basis.

If T has matrix representationA, then consider the matrixW whose columns
are the basis vectors chosen for Rn. Let V be the matrix whose columns are
the basis vectors T (B). This gives us the matrix equation AW = V . Note that
W and V are both square invertible matrices since their columns are linearly
independent. Therefore, we have A = VW−1, and A−1 = WV −1.

Now to prove the argument, it is obvious that if T (B) is also a basis of Rn,
then T−1 exists since V is invertible and we can solve for A−1, which is the
matrix representation of T−1 by the previous problem.

If T does have an inverse linear map, then T (B) must be a basis for Rn

because one can compute the inverse matrix to V , since both A and W are
invertible. Therefore the columns of V are linearly independent, and thus form
a basis for Rn, but V is T (B).
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15. How can you define a linear map T : V → W, for V a subspace of Rn and
W a subspace of Rm? Explain how the material of this section can be altered
for this new more general linear map. Does everything about linear maps also
work if we replace R by C and even mix R and C.

The problems arise when attempting to compute inverses of subspaces, as
the matrix representations of such transformations will not be square. The
transformations can be done by restricting domains (thus almost like consider-
ing images of subspaces etc...). Of course, the transformations will be invertible
if you restrict the range to be the image of the subspace used as the domain but
you cannot find the inverse by simply taking a matrix inverse. These concepts
also generalize to C.

9.2 The Kernel and Image Subspaces of a

Linear Map

1. Each of the following matrices represent a linear map T : Rn → Rm. Com-
pute both the Im(T ) and Ker(T ) for each map, expressing your answer in terms
of basis vectors.

(a)

[

2 −3
8 −4

]

(b)

[

2 −2
−1 1

]

(c)

[

2 −8 −2
−4 16 1

]

(d)





2 −8 −2
−4 16 1
−2 8 −1



 (e)





5 −2 −1
−4 2 1
−2 1 −4



 (f)

[

1 3 0 −2
0 1 3 3

]

2. For each of the maps from problem 1, verify that Theorem ?? holds.

3. Classify each map from problem 1 as one-to-one, onto or bijective; if the
map does not satisfy any of the given properties, then state so.

4. Compute both the Im(T ) and Ker(T ) for each of the following maps.

(a) T (〈x, y〉) = 〈x,−x, x〉

(b) T (〈x, y〉) = 〈y, x, y, x〉

(c) T (〈x, y, z〉) = 〈x+ y, y − z, x− y〉

(d) T (〈x, y, z〉) = x+ y + z
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5. Classify each map from problem 4 as one-to-one, onto or bijective; if the
map does not satisfy any of the given properties, then state so.

6. In problems 1 and 4, find a basis of Ker(T )⊥ and show that:

dim
(

Ker(T )⊥
)

= dim(Im(T ))

7. Prove that a linear map T : Rn → Rm is not one-to-one if m < n.

8. Prove that a linear map T : Rn → Rm is not onto if m > n.

9. (See Homework problem 11 of Section 9.1). Let T : Rn → Rm and
S : Rm → Rk be two linear maps. Their composite S ◦ T : Rn → Rk is
also a linear map.

(a) Let S ◦ T be one-to-one. Then must both S and T be one-to-one? If
yes, explain why. If no, then give an example of why not.

(b) Let S ◦ T be onto. Then must both S and T be onto? If yes, explain
why. If no, then give an example of why not.

10. Let A be the n × n matrix representing the linear map T : Rn → Rn

through multiplication by A.

(a) Explain how the columns of the matrix A are found and what they are
in the range Rn.

(b) Explain why det(A) 6= 0 if and only if T sends a basis to a basis.

9.3 Composites of Two Linear Maps and

Inverses

1. For each of the following pairs of maps, determine which order, if possible,
S and T can be composed in.

(a) T : R3 → R5 (b) T : R3 → R5 (c) T : R2 → R

S : R3 → R3 S : R5 → R3 S : R → R3

(d) T : R5 → R3 (e) T : R → R2 (f) T : R2 → R3

S : R4 → R3 S : R4 → R S : R3 → R3



9.4 Change of Bases for the Matrix Representation of a Linear Map 157

2. For each of the following pairs of maps, compute S◦T without using matrices.

(a) T (〈x, y〉) = x+ y (b) T (x) = 〈x,−x, 2x〉
S (a) = 〈a,−a〉 S (〈a, b, c〉) = 〈a+ b, a− c〉

(c) T (〈x, y〉) = 〈−x, y, x+ y〉 (d) T (x) = 〈3x, 2x,−4x〉
S (〈a, b, c〉) = 〈−a, b〉 S (〈a, b, c〉) = a+ b+ c

3. The compositions from problem 2 should have yielded two such that (S ◦
T ) (−→v ) = −→v , for all −→v in the domain of T . Which two are they?

4. The two compositions found in problem 3 highlight an important sticking
point in Definition ?? and Theorem ??. Verify that (T ◦ S) (−→v ) 6= −→v , for all
−→v in the domain of S. Why is this the case?

5. Determine the linear map given by each of the following matrices.

(a)
[

1 −1 2
]

(b)

[

1 1 0
1 0 −1

]

(c)





−1 0
0 1
1 1





(d)





−1 0
0 1
0 0



 (e)

[

1
−1

]

(f)





1
−1
2





6. Four of the matrices from problem 5 correspond to linear maps, S or T ,
from problem 2. Find them and state which maps they correspond to.

7. If the matrix C, which represents a composite of two linear maps through
multiplication by C, has nonzero determinant, then must the same be true for
each of the two matrices A and B, which represent the individual linear maps?
If yes, then explain why. If not, then give an example to verify it.

8. Let T : Rn → Rn be a linear map that is invertible as a function. Show
directly that its inverse function, T−1 : Rn → Rn, is also a linear map.

9.4 Change of Bases for the Matrix

Representation of a Linear Map

1. Represent each vector of the standard basis S2 of R2 as a linear combination
of vectors in the basis B = {〈1, 1〉, 〈1,−1〉}. Also, write your answer in vector
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form, using the correct notation.

2. Express each of the following vectors in R2 in vector form using the basis B
from problem 1:

(a) 〈2, 0〉 (b) 〈2,−3〉 (c) 〈9,−1〉

(d) 〈−2, 0〉 (e) 〈− 1
2 ,

3
2 〉 (f) 〈7,−6〉

3. Verify that the following equation has only the trivial solution:

a−→e1 + b−→e2 = a〈1, 1〉+ b〈1,−1〉

Here, −→e1 and −→e2 are the standard basis vectors for R2. What does this imply
in regards to representation of vectors with the standard basis and the basis B
from problem 1?

4. Represent each vector of the standard basis S3 of R3 as a linear combina-
tion of vectors in the basis B = {〈1, 0, 1〉, 〈0, 1, 1〉, 〈0,−1, 0〉}. Also, write your
answer in vector form, using the correct notation.

5. Express each of the following vectors in R3 in vector form using the basis B
from problem 4.

(a) 〈1, 1, 0〉 (b) 〈2, 2,−2〉 (c) 〈−5, 6, 6〉

(d) 〈2,−2, 3〉 (e) 〈1, 1, 1〉 (f) 〈3,−4,−10〉

6. Construct a matrix A′ that takes vectors in R2 expressed in terms of
the basis B1 = {〈1, 1〉, 〈1,−1, 〉}, and expresses them in terms of the basis
B2 = {〈2,−1〉, 〈3, 2, 〉}, i.e., A′−→x B1 = −→x B2 .

7. Construct a matrix A′ that takes vectors in R3 expressed in terms of the
basis B1 = {〈1, 0, 1〉, 〈0, 1, 1〉, 〈0,−1, 0〉}, and expresses them in terms of the
basis B2 = {〈1, 1,−1〉, 〈1,−1, 1〉, 〈1,−1,−1〉}.

8. Given the map T : R2 → R3 defined by T (〈x, y〉) = 〈0, y, x〉, find the
matrix A′ corresponding to T under the two bases B2 = {〈1, 1〉, 〈1,−1〉} and
B3 = {〈0, 1, 1〉, 〈1, 0, 0〉, 〈0, 1, 0〉}.

9. Construct the commutation diagram for the map from problem 8.

10. Given the map S : R3 → R4 defined by S(〈x, y, z〉) = 〈0, z, y, x〉, find the
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matrix A′ corresponding to S under the two bases

B3 = {〈0, 1, 1〉, 〈1, 0, 0〉, 〈0, 1, 0〉}

and
B4 = {〈0, 1, 1, 1〉, 〈1, 0, 0, 1〉, 〈0, 1, 1, 0〉, 〈0, 0, 1, 1〉}

11. Construct the commutation diagram for the map from problem 10.

12. Construct the commutation diagram for S ◦ T , where T and S are the
maps from problems 8 and 10, respectively. Use the diagram to find the matrix
corresponding to the map S ◦ T .

13. Consider the case of a linear map whose domain is represented by a non-
standard basis Bn, and whose image is also represented by a non-standard
basis Bm. Hence, we already have T ′ (−→x Bn

) = −→y Bm
. How can you recover

the original maps’s matrix A in the standard bases, given the matrix A′ that
represents T ′ for the pair of nonstandard bases? Hint: Drawing a commutation

diagram can help.

14. In problems 6 and 7, verify directly that (A′)−1 reverses the order of the
two bases.

15. Let T : Rn → Rm be a linear map where we have two (different) pairs of
bases, bases B and C for Rn and bases D and E for Rm. Let TB

D
be the matrix

that represents the linear map T in the two bases B on the domain Rn and D

on the range Rm. Similarly, TC

E
be the matrix that represents the linear map T

in the two bases C on the domain Rn and E on the range Rm. Also, for I the
identity linear map from Rn to Rn, we have the matrix IB

C
that represents the

linear map I in the two basesB and C while similarly, the matrix IE
D

represents
the identity linear map I from Rm to Rm in the two bases D and E.

(a) Explain the meaning of, and discuss the validity of, the following com-
mutative diagram:

Rn
B

TB

D−−−−→ Rm
D

IB

C





y

x




IE

D

Rn
C

TC

E−−−−→ Rm
E

(b) Is the matrix equation TB

D
= IE

D
TC

E
IB
C

correct? Explain your reasoning.

(c) Verify with an example the matrix equation in part (b) when only one
pair B and D of bases are the standard bases of R2.
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(d) Verify with an example the matrix equation in part (b) when all four
bases are not the standard bases of R2.

16. (Continuation of problem 15.) Let I be the identity linear map from Rn

to Rn and B, C be two bases of Rn.

(a) Explain why IB
B

= IC
C

= In, where In is the n× n identity matrix.

(b) Explain why IB
C

=
(

IC
B

)−1
.

(c) Let T : Rn → Rn be a linear map. Explain why

TB

B
= IC

B
TC

C
IB
C

is correct, and thus

TB

B
= IC

B
TC

C

(

IC
B

)−1

This last equation says that the two n × n matrices TB

B
and TC

C
are similar

matrices.

(d) Explain why
(

T−1
)B

C
=

(

TC

B

)−1
.

(e) Why is det
(

TC

C

)

= det
(

TB

B

)

?

(f) Let n = 2, and do examples to illustrate parts (a)–(e) above.


